精英家教网 > 高中数学 > 题目详情
选做题:
矩阵与变换在平面直角坐标系xOy中,直线x+y+2=0在矩阵M=对应的变换作用下得直线m:x-y-4=0,求实数a,b的值.
【答案】分析:在直线x+y+2=0上取两点A(-2,0),B(0,-2),A,B在矩阵M对应的变换作业下分别对应于点A',B',分别求出点A',B'的坐标,代入直线m,建立方程组,解之即可.
解答:解:在直线x+y+2=0上取两点A(-2,0),B(0,-2)
A,B在矩阵M对应的变换作业下分别对应于点A',B'
因为=,所以A'的坐标为(-2,-2b);
=,所以B'的坐标为(-2a,-8);
由题意可知A',B'在直线m:x-y-4=0上,所以
解得:a=2,b=3
点评:本题主要考查了几种特殊的矩阵变换,同时考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题:
矩阵与变换在平面直角坐标系xOy中,直线x+y+2=0在矩阵M=
.
1a
b4
.
对应的变换作用下得直线m:x-y-4=0,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选做题
(A)选修4-1:几何证明选讲
如图,AB是半圆O的直径,延长AB到C,使BC=
3
,CD切半圆于点D,DE⊥AB,垂足为E,若AE:EB=3:1,求DE的长.
(B)选修4-2:矩阵与变换
在平面直角坐标系xOy中,直线y=kx在矩阵
01
10
对应的变换下得到的直线经过点P(4,1),求实数k的值.
(C)选修4-4:坐标系与参数方程
在极坐标系中,已知圆ρ=asinθ(a>0)与直线ρcos(θ+
π
4
)=1
相切,求实数a的值.
(D)选修4-5:不等式选讲
已知a,b,c满足abc=1,求证:(a+2)(b+2)(c+2)≥27.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
21
34

(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
x=-1+rcosθ
y=rsinθ
为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=2
2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4
3

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲
如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:
B.选修4—2 矩阵与变换
在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。
C.选修4—4 参数方程与极坐标
在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
D.选修4—5 不等式证明选讲
abc为正实数,求证:

查看答案和解析>>

同步练习册答案