精英家教网 > 高中数学 > 题目详情

对甲、乙两个班进行一门课程的考试,按照学生考试成绩优秀和不优秀统计后,得到下表:

请画出列联表的二维条形图,通过图形判断成绩与班级是否有关,并利用独立性检验估计判断“成绩与班级有关”犯错误的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
精英家教网
(Ⅰ)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(Ⅱ)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.

(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(II)根据频率分布直方图填写下面2x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:K2=数学公式(此公式也可写成x2=数学公式

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高三(下)第九次月考数学试卷(理科)(解析版) 题型:解答题

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.

(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(II)根据频率分布直方图填写下面2x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:K2=(此公式也可写成x2=

查看答案和解析>>

科目:高中数学 来源:2011年福建省高三质量检查数学试卷(理科)(解析版) 题型:解答题

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.

(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(II)根据频率分布直方图填写下面2x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:K2=(此公式也可写成x2=

查看答案和解析>>

同步练习册答案