精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=loga ,(a>0,且a≠1),
(1)求函数f(x)的定义域.
(2)求使f(x)>0的x的取值范围.

【答案】
(1)解: ,解得x>0,所以函数的定义域为(0,+∞)
(2)解:根据题意,㏒a >0,

当a>1时, >1x>1;

当0<a<1时, <1且x>00<x<1


【解析】(1)利用对数的真数大于0,被开方数大于等于0求出定义域.(2)通过对底数a分类讨论;利用函数的单调性将对数函数符号脱去,求出x的范围.
【考点精析】本题主要考查了对数函数的定义域和对数函数的单调性与特殊点的相关知识点,需要掌握对数函数的定义域范围:(0,+∞);过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=2sin(3x ),有下列命题:①其表达式可改写为y=2cos(3x );②y=f(x)的最小正周期为 ;③y=f(x)在区间( )上是增函数;④将函数y=2sin3x的图象上所有点向左平行移动 个单位长度就得到函数y=f(x)的图象.其中正确的命题的序号是(注:将你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)满足: ,当x∈(﹣1,0)时,有f(x)>0,且 .设 ,则实数m与﹣1的大小关系为(
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga ,(a>0且a≠1).
(1)判断f(x)的奇偶性,并加以证明;
(2)是否存在实数m使得f(x+2)+f(m﹣x)为常数?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an}的前n项和为Sn , 对任意n∈N* , 点(an , Sn)都在函数 的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足 ,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足 .若对任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数.

(1)求证:

(2)若恒成立,求的最大值与的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[(﹣2,0)∪(0,2)]上的奇函数,当x>0,f(x)的图象如图所示,那么f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:xA,且A={x|a﹣1xa+1},命题q:xB,且B={x|x2﹣4x+3≥0}

(Ⅰ)若A∩B=A∪B=R,求实数a的值;

(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 ,且函数 在区间 上单调递增,求实数a的范围;

2)若函数有两个极值点 且存在 满足 ,令函数 ,试判断 零点的个数并证明.

查看答案和解析>>

同步练习册答案