精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值为3,图象经过点(0,2),且其相邻两对称轴间的距离为2,则f(1)+f(2)+f(3)+…+f(100)=
 
分析:先将原函数用降幂公式转化为:f(x)=
A
2
cos(2ωx+2φ)+
A
2
+1,由相邻两对称轴间的距离为2可知周期求得ω,由最大值为3,求得A,又由图象经过点(0,2),求得?,进而得f(x)再研究问题.
解答:解:将原函数f(x)=Acos2(ωx+φ)+1转化为:f(x)=
A
2
cos(2ωx+2φ)+
A
2
+1
由相邻两对称轴间的距离为2可知周期为:4,则2ω=
4
=
π
2
,ω=
π
4

由最大值为3,可知A=2
又∵图象经过点(0,2),
∴cos2φ=0
∴2φ=
π
2

∴f(x)=cos(
π
2
x+
π
2
)+2=-sin
π
2
x+2
由于100=25×4=25T
∴f(1)+f(2)+f(3)+…+f(100)=200
故答案为:200
点评:本题主要考查了降幂公式和三角函数中各参数的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案