精英家教网 > 高中数学 > 题目详情
A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为
 
考点:直线与平面垂直的性质,球内接多面体
专题:计算题,空间位置关系与距离
分析:由题意把A、B、C、D扩展为三棱柱如图,求出上下底面中心连线的中点与A的距离为球的半径,然后求出球的体积.
解答: 解:由题意画出几何体的图形如图,
把A、B、C、D扩展为三棱柱,
上下底面中心连线的中点与A的距离为球的半径,
AD=2AB=6,OE=3,△ABC是正三角形,
所以AE=
2
3
AB2-(
1
2
AB)2
=
3

AO=2
3
,可得球的体积为32
3
π.
故答案为:32
3
π.
点评:本题考查球内接多面体,考查球的体积,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,4],
x
-a≥0”,若命题“非p”是真命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,P、Q、R分别为BQ、CR、AP的中点,设
CA
=
a
CB
=
b
,用
a
b
表示
AP

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过P(3,4),且A(-2,3),B(8,13)到直线l距离相等,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知S100=10,S10=100,则S110=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=n2+4n+2,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x
x+a
在(-2,+∞)上为增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log2x,x∈[1,8],求函数y=[f(x)]2+f(x2)的最大值及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O2的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:△APD∽△CPE;
(2)若AD是⊙O2的切线,且PA=4,PC=2,BD=6,求AD的长.

查看答案和解析>>

同步练习册答案