【题目】如图,为椭圆的左顶点,过的直线交抛物线于、两点,是的中点.
(1)求证:点的横坐标是定值,并求出该定值;
(2)若直线过点,且倾斜角和直线的倾斜角互补,交椭圆于、两点,求的值,使得的面积最大.
【答案】(1)证明见解析,定值1. (2)
【解析】
(1)由题意可求,设、,:,联立直线与抛物线,利用是的中点得,计算可得点的横坐标是定值;
(2)由题意设直线的方程为,联立方程,利用是的中点,可得,根据三角形的面积公式以及基本不等式可求的面积最大值,由取等条件解得的值.
(1),过的直线和抛物线交于两点,所以的斜率存在且不为0,设:,其中是斜率的倒数,设、,满足,即,且,因为是中点,所以,所以,,
所以,即点的横坐标为定值1.
(2)直线的倾斜角和直线的倾斜角互补,所以的斜率和的斜率互为相反数.设直线为,即,
联列方程得,
,所以;且,
∵点是中点,∴,
设到的距离,,
,令,
当且仅当,时取到,
所以,.
法二:因为点在抛物线上,不妨设,又是中点,则,代入抛物线方程得:,得:,∴为定值.
(2)∵直线的斜率,直线斜率,
∴直线的方程:,即,令代入椭圆方程整理得:
,设、,下同法一.
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X≥85为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
(2)从图中考核成绩满足X[70,79]的学生中任取3人,设Y表示这3人重成绩满足≤10的人数,求Y的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形, 平面,,点是上的点,且 .
(1)求证:对任意的 ,都有.
(2)设二面角C-AE-D的大小为 ,直线BE与平面所成的角为 ,
若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查民众对国家实行“新农村建设”政策的态度,现通过网络问卷随机调查了年龄在20周岁至80周岁的100人,他们年龄频数分布和支持“新农村建设”人数如下表:
年龄 | ||||||
频数 | 10 | 20 | 30 | 20 | 10 | 10 |
支持“新农村建设” | 3 | 11 | 26 | 12 | 6 | 2 |
(1)根据上述统计数据填下面的列联表,并判断是否有的把握认为以50岁为分界点对“新农村建设”政策的支持度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持 | |||
不支持 | |||
合计 |
(2)为了进一步推动“新农村建设”政策的实施,中央电视台某节目对此进行了专题报道,并在节目最后利用随机拨号的形式在全国范围内选出4名幸运观众(假设年龄均在20周岁至80周岁内),给予适当的奖励.若以频率估计概率,记选出4名幸运观众中支持“新农村建设”人数为,试求随机变量的分布列和数学期望.
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中是真命题的是
A. 命题“若,则”的否命题是“若,则”
B. 若为假命题,则p,q均为假命题
C. 命题p:,,则:,
D. “”是“函数为偶函数”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是( )
A. 从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样
B. 线性回归直线一定过样本中心点
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D. 若一组数据1、、2、3的众数是2,则这组数据的中位数是2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,圆与圆关于直线:对称.
(1)求圆的方程;
(2)过直线上的点分别作斜率为,4的两条直线,,求使得被圆截得的弦长与被圆截得的弦长相等时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料90,五合板600,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l,五合板2,生产每个书橱而要方木料0.2,五合板1,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com