精英家教网 > 高中数学 > 题目详情

【题目】已知标有1~20号的小球20,若我们的目的是估计总体号码的平均值,20个小球号码的平均值.试验者从中抽取4个小球,以这4个小球号码的平均值估计总体号码的平均值,按下面方法抽样(按小号到大号排序):

(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为____.

【答案】 9.5 10.5

【解析】20个小球分4,每组5,

(1)若以2号为起点,则另外三个球的编号依次为7,12,17;4球编号平均值为=9.5.

(2)若以3号为起点,则另外三个球的编号依次为8,13,18;4球编号平均值为=10.5.

答案:(1)9.5 (2)10.5.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 (a>b>0)的左、右焦点分别为F1 , F2 , 点D在椭圆上.DF1⊥F1F2 =2 ,△DF1F2的面积为

(1)求椭圆的标准方程;
(2)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?

附:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,锐角和钝角的终边分别与单位圆交于两点.

(Ⅰ)如果点纵坐标分别为,求

(Ⅱ)若轴上异于的点,且,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.

(1)求甲、乙两人所付滑雪费用相同的概率;

(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=(  )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,f(x)= 为奇函数.
(1)求函数F(x)=f(x)+2x﹣ ﹣1的零点;
(2)设g(x)=2log2 ),若不等式f1(x)≤g(x)在区间[ ]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的直线的方程:

(1)直线经过点,并且它的倾斜角等于直线的倾斜角的2倍,求直线的方程;

(2)直线过点,并且在轴上的截距是轴上截距的,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx-)+1(A>0, ω>0)与ω=cosωx的部分图象如图所示。

(1)求A,a,b的值及函数f(x)的递增区间;

(2)若函数y= g(x-m)(m>)与y= f(x)+ f(x-)的图象的对称轴完全相同,求m的最小值.

查看答案和解析>>

同步练习册答案