精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sin2x﹣cos2x+1,下列结论中错误的是(
A.f(x)的图象关于( ,1)中心对称
B.f(x)在( )上单调递减
C.f(x)的图象关于x= 对称
D.f(x)的最大值为3

【答案】B
【解析】解:f(x)= sin2x﹣cos2x+1=2sin(2x﹣ )+1,

A.当x= 时,sin(2x﹣ )=0,则f(x)的图象关于( ,1)中心对称,故A正确,

B.由2kπ+ ≤2x﹣ ≤2kπ+ ,k∈Z,得kπ+ ≤x≤kπ+ ,k∈Z,

当k=0时,函数的递减区间是[ ],故B错误,

C.当x= 时,2x﹣ =2× = ,则f(x)的图象关于x= 对称,故C正确,

D.当2sin(2x﹣ )=1时,函数取得最大值为2+1=3,故D正确,

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在直线的方程为y=0.

(1)求点A的坐标;
(2)若点B的坐标为(1,2),求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ﹣k ln x,k>0.
(1)求f(x)的单调区间和极值;
(2)证明:若f(x)存在零点,则f(x)在区间(1, ]上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有同一型号的电脑96,为了了解这种电脑每开机一次所产生的辐射情况,从中抽取10台在同一条件下做开机实验,测量开机一次所产生的辐射,得到如下数据:

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)写出采用简单随机抽样抽取上述样本的过程;

(2)根据样本,请估计总体平均数与总体标准差的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(1)求椭圆的方程;

(2)若不经过点的直线交于两点,且直线与直线的斜率之和为,证明:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据IEC(国际电工委员会)调查显示,小型风力发电项目投资较少,且开发前景广阔,但受风力自然资源影响,项目投资存在一定风险.根据测算,风能风区分类标准如下:

风能分类

一类风区

二类风区

平均风速m/s

8.5~10

6.5~8.5

假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,调研结果是:未来一年内,位于一类风区的A项目获利30%的可能性为0.6,亏损20%的可能性为0.4;位于二类风区的B项目获利35%的可能性为0.6,亏损10%的可能性是0.1,不赔不赚的可能性是0.3.
(1)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(2)某公司计划用不超过100万元的资金投资于A,B项目,且公司要求对A项目的投资不得低于B项目,根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(3x+φ)的图象向右平移动 个单位,得到的图象关于y轴对称,则|φ|的最小值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案