【题目】解关于x的方程:
(1)lgx+lg(x﹣3)=1;
(2) .
【答案】
(1)解:∵lgx+lg(x﹣3)=lg[x(x﹣3)]=lg(x2﹣3x)=1=lg10
∴x2﹣3x=10,∴x=﹣2或5
∵x>0,∴x=5
(2)解:
∴ ,∴x=3
【解析】(1)将不等式转化为对数的真数的运算,转化为整式不等式解之;(2)利用指数的幂的运算解答.
【考点精析】根据题目的已知条件,利用函数的零点与方程根的关系的相关知识可以得到问题的答案,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
科目:高中数学 来源: 题型:
【题目】已知曲线C1,C2的极坐标方程分别为ρ=2cosθ, ,射线θ=φ, , 与曲线C1交于(不包括极点O)三点A,B,C.
(Ⅰ)求证: ;
(Ⅱ)当时,求点B到曲线C2上的点的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且f(1)=2,f(2)=3. (I)若f(x)是偶函数,求出f(x)的解析式;
(II)若f(x)是奇函数,求出f(x)的解析式;
(III)在(II)的条件下,证明f(x)在区间 上单调递减.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,底面是边长为2的菱形, ,四边形是矩形,平面平面.
(1)在图中画出过点的平面,使得平面(必须说明画法,不需证明);
(2)若二面角是,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四棱柱的底面边长为,高为,现从该正四棱柱的个顶点中任取个点.设随机变量的值为以取出的个点为顶点的三角形的面积.
(1)求概率;
(2)求的分布列,并求其数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次函数f(x)是R上的增函数,已知f[f(x)]=16x+5,g(x)=f(x)(x+m).
(1)求f(x);
(2)若g(x)在(1,+∞)单调递增,求实数m的取值范围;
(3)当x∈[﹣1,3]时,g(x)有最大值13,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年的4月23日是“世界读书日”,某校研究性学习小组为了解本校学生的阅读情况,随机调查了本校200名学生在这一天的阅读时间 (单位:分钟),将样本数据整理后绘制成如图的样本频率分布直方图.
(1)求的值;
(2)试估计该学校所有学生在这一天的平均阅读时间;
(3)若用分层抽样的方法从这200名学生中,抽出25人参加交流会,则阅读时间为, 的两组中各抽取多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市文化部门为了了解本市市民对当地地方戏曲是否喜爱,从15-65岁的人群中随机抽样了人,得到如下的统计表和频率分布直方图.
(1)写出其中的、、及和的值;
(2)若从第1,2,3组回答喜欢地方戏曲的人中用分层抽样的方法抽取6人,求这三组每组分别抽取多少人?
(3)在(2)抽取的6人中随机抽取2人,求这2人都是第3组的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com