设数列的前
项和为
,
.
(1)若,求
;
(2)若,求
的前6项和
.
科目:高中数学 来源: 题型:解答题
定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称
为“三角形”数列.对于“三角形”数列
,如果函数
使得
仍为一个“三角形”数列,则称
是数列
的“保三角形函数”,
.
(Ⅰ)已知是首项为2,公差为1的等差数列,若
是数列
的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列的首项为2010,
是数列
的前n项和,且满足
,证明
是“三角形”数列;
(Ⅲ)根据“保三角形函数”的定义,对函数,
,和数列1,
,
,(
)提出一个正确的命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在数列中,
是数列
前
项和,
,当
(1)证明为等差数列;;
(2)设求数列
的前
项和
;
(3)是否存在自然数m,使得对任意自然数,都有
成立?若存在,
求出m 的最大值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}中,a2=1,前n项和为Sn,且.
(1)求a1,a3;
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分13分)已知各项均为正数的数列是数列
的前n项和,对任意
,有2Sn=2
.
(Ⅰ)求常数p的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)记,(
)若数列
从第二项起每一项都比它的前一项大,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com