精英家教网 > 高中数学 > 题目详情

【题目】某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:

1

4

7

12

229

244

241

196

(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述的变化关系,并说明理由,

(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.

【答案】(1),理由见解析;(2)第5个月,利润最大为245.

【解析】

1)根据题中数据,即可直接判断出结果;

2)将题中代入,求出参数,根据二次函数的性质,以及自变量的范围,即可得出结果.

(1)由题目中的数据知,描述每月利润(单位:万元)与相应月份数的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数进行描述;

(2)将代入,解得

,∴万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的子集,若,则称为一个“理想配集”,那么符合此条件的“理想配集”的个数是________.(规定是两个不同的“理想配集”)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1 过点P且离心率为

(1)求C1的方程;

(2)若椭圆C2过点P且与C1有相同的焦点,直线lC2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区上年度电价为/kWh,年用电量为kWh.本年度计划将电价降低到055/ kWh075/ kWh之间,而用户期望电价为040/ kWh.经测算,下调电价后新增用电量与实际电价与用户的期望电价的差成反比(比例系数为),该地区电力的成本价为030/ kWh

1)写出本年度电价下调后,电力部门的收益与实际电价之间的函数关系式;

2)设=,当电价最低定为多少时仍可保证电力部门的收益比上一年至少增长20%?(注:收益=实际电量×(实际电价-成本价))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆上的一点与两个焦点构成的三角形周长为.

(1)求椭圆的方程;

(2)已知直线与椭圆相交于两点.

①若线段中点的横坐标为,求的值;

②在轴上是否存在点,使为定值?若是,求点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:

命题a=0,ab=0”的否命题是a=0,ab≠0”;

已知命题p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命题p”与命题“pq”都是真命题,则命题q一定是真命题;

命题0<a<1,loga(a+1)<lo.

其中正确命题的序号是_____.(把所有正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论:

①命题a=0,ab=0”的否命题是a=0,ab≠0”;

②已知命题p:xR,x2+6x+11<0,p:xR,x2+6x+110;

③若命题p与命题pq都是真命题,则命题q一定是真命题;

④命题0<a<1,loga(a+1)<log

其中正确结论的序号是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为(
A.15
B.31
C.63
D.127

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案