£¨2007•·îÏÍÇøһģ£©ÒÑÖª£ºº¯Êýf(x)=
x
ax+b
(a£¬b¡ÊR£¬ab¡Ù0)
£¬f(2)=
2
3
£¬f(x)=x
ÓÐΨһµÄ¸ù£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊýÁÐ{an}¶Ôn¡Ý2£¬n¡ÊN×ÜÓÐan=f£¨an-1£©£¬a1=1£»ÇóÖ¤{
1
an
}
ΪµÈ²îÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£®
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄÊýÁÐ{bn}Âú×㣺{bn}Ϊ{an}µÄ×ÓÊýÁУ¨¼´{bn}ÖеÄÿһÏÊÇ{an}µÄÏÇÒ{bn}ΪÎÞÇîµÈ±ÈÊýÁУ¬ËüµÄ¸÷ÏîºÍΪ
1
2
£®Èô´æÔÚ£¬ÕÒ³öÒ»¸ö·ûºÏÌõ¼þµÄÊýÁÐ{bn}£¬Ð´³öËüµÄͨÏʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ýf£¨2£©µÄÖµ½¨Á¢¹ØÓÚaºÍbµÄµÈÁ¿¹Øϵ£¬
½â·¨Ò»£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃax2+£¨b-1£©x=0ÓÐΨһ¸ù£¬ÀûÓÃÅбðʽ½øÐÐÇó½â£¬Çó³öaºÍbµÄÖµ£»
½â·¨¶þ£º¸ù¾Ýf£¨x£©=x ÓÐΨһ¸ù£¬¿ÉµÃx£¨
1
ax+b
-1£©=0£¬½âµÃÒ»¸ùΪ0£¬´Ó¶ø
1
ax+b
-1=0µÄ¸ùÒ²ÊÇx=0£¬¿ÉÇó³öaºÍbµÄÖµ£»
£¨2£©½«an=
an-1
an-1+1
È¡µ¹Êý£¬»¯¼ò¿ÉµÃ{
1
an
}ΪµÈ²îÊýÁУ¬´Ó¶øÇó³ö{an}µÄͨÏʽ£®
£¨3£©Éè{bn} µÄÊ×ÏîΪ
1
m
£¬¹«±ÈΪq£¬È»ºóÇó³öÕâ¸öÎÞÇîµÈ±ÈÊýÁеĸ÷ÏîºÍ¿ÉµÃµ½mºÍqµÄµÈÁ¿¹Øϵ£¬È»ºóÈÎÒâÇó³öÒ»×é·ûºÏÌâÒâÊýÁм´¿É£®
½â´ð£º½â£º£¨1£©f(2)=
2
3
2
2a+b
=
2
3
£¨1·Ö£©
½â·¨Ò»£ºf£¨x£©=x ÓÐΨһ¸ù£¬ËùÒÔ
x
ax+b
=x
¼´ax2+£¨b-1£©x=0ÓÐΨһ¸ù£¬£¨1·Ö£©
¡à¡÷=£¨b-1£©2=0£¬£¨1·Ö£©
b=1 a=1 £¨1·Ö£©
ÓÐ b=1 a=1 µÃ£º·½³ÌµÄ¸ùΪ£ºx=0£¨1·Ö£©
¾­¼ìÑéx=0ÊÇÔ­·½³ÌµÄ¸ù£¨1·Ö£©
½â·¨¶þ£º
x
ax+b
=x
x£¨
1
ax+b
-1£©=0£¨1·Ö£©
¡¡ x1=0£¬ÒòΪ·½³ÌÓÐΨһµÄ¸ù£¨1·Ö£©
¼´£º
1
ax+b
-1=0µÄ¸ùÒ²ÊÇx=0£¬£¨1·Ö£©
µÃb=1 a=1 £¨1·Ö£©
¾­¼ìÑéx=0ÊÇÔ­·½³ÌµÄ¸ù£¨1·Ö£©
£¨2£©an=
an-1
an-1+1
1
an
-
1
an-1
=1
£¨2·Ö£©
¡à{
1
an
}ΪµÈ²îÊýÁУ¨1·Ö£©
¡à
1
an
=
1
a1
+(n-1)¡Á1=n
£¨2·Ö£©
ËùÒÔ an=
1
n
£¨1·Ö£©
£¨3£©Éè{bn} µÄÊ×ÏîΪ
1
m
£¬¹«±ÈΪq £¨m¡ÊN*£¬
1
q
¡ÊN*
£©
ËùÒÔÕâ¸öÎÞÇîµÈ±ÈÊýÁеĸ÷ÏîºÍΪ£º
1
m
1-q
=
1
2
£¬
2
m
=1-q
£»
µ±m=3 ʱ£¬q=
1
3
£¬bn=(
1
3
)n
£»
µ±m=4ʱ£¬q=
1
2
£¬bn=(
1
2
)n+1
£¨6·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȲîÊýÁеÄÅж¨ºÍÊýÁеÄÇóºÍ£¬Í¬Ê±¿¼²éÁË·½³ÌµÄ¸ùµÄÓйØÎÊÌ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•·îÏÍÇøһģ£©Èôsin¦È£¼0£¬ÇÒsin2¦È£¾0£¬Ôò½Ç¦ÈµÄÖÕ±ßËùÔÚÏóÏÞÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•·îÏÍÇøһģ£©ÒÑÖª£ºº¯Êýf(x)=
x
ax+b
(a£¬b¡ÊR£¬ab¡Ù0)
£¬f(2)=
2
3
£¬f(x)=x
ÓÐΨһµÄ¸ù£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊýÁÐ{an}¶Ôn¡Ý2£¬n¡ÊN×ÜÓÐan=f£¨an-1£©£¬a1=1£»Çó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄÊýÁÐ{bn}Âú×㣺{bn}Ϊ{an}µÄ×ÓÊýÁУ¨¼´{bn}ÖеÄÿһÏÊÇ{an}µÄÏÇÒ{bn}ΪÎÞÇîµÈ±ÈÊýÁУ¬ËüµÄ¸÷ÏîºÍΪ
1
2
£®Èô´æÔÚ£¬ÕÒ³öËùÓзûºÏÌõ¼þµÄÊýÁÐ{bn}£¬Ð´³öËüµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£»Èô²»´æÔÚ£¬Ò²Ðè˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•·îÏÍÇøһģ£©ÈôÐéÊýzÂú×ãz+
1
z
¡ÊR
£¬Ôò|z-2i|µÄÈ¡Öµ·¶Î§ÊÇ
[1£¬
5
)¡È(
5
£¬3]
[1£¬
5
)¡È(
5
£¬3]
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•·îÏÍÇøһģ£©ÔÚÒ»¸ö¿Ú´üÀï×°ÓÐ5¸ö°×ÇòºÍ3¸öºÚÇò£¬ÕâЩÇò³ýÑÕÉ«ÍâÍêÈ«Ïàͬ£¬ÏÖ´ÓÖÐÃþ³ö3¸öÇò£¬ÖÁÉÙÃþµ½2¸öºÚÇòµÄ¸ÅÂʵÈÓÚ
2
7
2
7
 £¨Ó÷ÖÊý±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•·îÏÍÇøһģ£©SnÊǵȲîÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Èôa1£¾0ÇÒS19=0£¬Ôòµ±SnÈ¡µÃ×î´óֵʱµÄn=
9»ò10
9»ò10
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸