精英家教网 > 高中数学 > 题目详情

【题目】如图,一个六边形点阵,它的中心是1个点(第1层),第2层每边有2个点, 3层每边有3个点,,依此类推,若一个六边形点阵共有217个点,那么它的层数为(

A.10B.9C.8D.7

【答案】B

【解析】

先根据条件对每一层的点的个数进行列举,然后通过归纳推理,得到各层的点的个数的一个规律,再利用这个规律求出共有n层时点的总数,结合条件,求出图形的层数.

第一层点数为:1,第二层点数:6,第三层点数:(顶点+边的中点) ,

第四层点的个数为: (在第三层基础上, 各边多一点)

第五层点的个数为:(在第四层基础上, 各边多一点)

层点的个数为:(在第n-1层基础上,各边多一点)

设一个图形共有层时,共有的点数为:

由题意得:

,(

解得

故一共有9.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有三家工厂,分别位于矩形ABCD的顶点AB,及CD的中点P处,已知km,,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且AB与等距离的一点O处建造一个污水处理厂,并铺设排污管道AOBOOP,设排污管道的总长为ykm

I)按下列要求写出函数关系式:

,将表示成的函数关系式;

,将表示成的函数关系式.

)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排水管道总长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为的椭圆E的左顶点为A,点A到右准线的距离为6

1)求椭圆E的标准方程;

2)过点A且斜率为的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆EM点,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两人各有三张卡片,甲的卡片分别标有数字1、2、3,乙的卡片分别标有数字0、1、3.两人各自随机抽出一张,甲抽出的卡片上的数字记为,乙抽出的卡片上的数字记为,则的积为奇数的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆M:(ab>0)的离心率为,左右顶点分別为A,B,线段AB的长为4.P在椭圆M上且位于第一象限,过点A,B分别作l1⊥PA,l2⊥PB,直线l1,l2交于点C.

(1)若点C的横坐标为﹣1,求P点的坐标;

(2)直线l1与椭圆M的另一交点为Q,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点.

(1)求椭圆的标准方程;

(2)若为椭圆上不同的两点,且以为直径的圆过坐标原点.是否存在定圆与动直线相切?若存在,求出该圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为的正方形,的中点,以为折痕把折起,使点到达点的位置,且二面角为直二面角,连结.

(1)记平面与平面相较于,在图中作出,并说明画法;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案