精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线为参数),直为参数),以为极点,轴正半轴为极轴建立极坐标系.

(1)求的极坐标方程;

(2)当时,直线相交于两点;过点的垂线与曲线的另一个交点为,求的最大值.

【答案】(1);(2)

【解析】

(1)先把参数方程转化成直角坐标方程再把直角坐标方程转化成极坐标方程即可.

(2)方法一求出点和点的极坐标, 即可转化成;然后再转化成最后化简即可求出最大值

方法二利用推导出的直径列出关系式最后作出均值不等式即可求解.

(1)因为曲线为参数),

所以曲线的普通方程为:

的极坐标方程为

化简得:

因为直线为参数),所以直线的极坐标方程为:

(漏写不扣分)

(2)设点的极坐标为,则

的极坐标为,则

所以当时,

解法二:由已知得:的直径

故有

当且仅当时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数

()求实数的值;

()用定义证明函数上的单调性;

()若对任意的,不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题:

在定义域上单调递增;

②若锐角满足,则

是定义在上的偶函数,且在上是增函数,若,则

④函数的一个对称中心是

其中真命题的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的零点;

(2)当,求函数上的最大值;

(3)对于给定的正数a,有一个最大的正数,使时,都有,试求出这个正数,并求它的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了制定提升农民年收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的年平均收入元(单位:千元)(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得,利用该正态分布,求:

i)在扶贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?

ii)为了调研精准扶贫,不落一人的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求实数的值;

(2)设函数,是否存在非零实数,使得方程恰好有两个解?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点.设函数abkR.

(1)若x=1处的切线.①当有两个极值点,且满足·=1时,求b的值及a的取值范围;②当函数的图象只有一个交点,求a的值;

(2)若对满足函数的图象总有三个交点P,Q,R”的任意突数k,都有PQ=QR成立,求abk满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.现随机地向大正方形内部区域投掷飞镖,若飞镖落在小正方形区域的概率是,则直角三角形的两条直角边长的比是(长边:短边)(

A.B.C.D.

查看答案和解析>>

同步练习册答案