精英家教网 > 高中数学 > 题目详情
已知点动点P满足.
(Ⅰ)若点的轨迹为曲线,求此曲线的方程;
(Ⅱ)若点在直线上,直线经过点且与曲线有且只有一个公共点,求的最小值.
(Ⅰ) ;(Ⅱ)

试题分析:(Ⅰ)本题属直接法求轨迹方程,即根据题意列出方程,化简整理即可。(Ⅱ)圆的圆心为半径为,因为直线与圆相切,所以,所以当最小时取得最小值。由分析可知当
试题解析:解:(Ⅰ)设,由|PA|=|PB|得
    2分
两边平方得     3分
整理得    5分
   6分
(Ⅱ)当.
,   8分
,    10分
 . 12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,MN为两圆的公共弦,一条直线与两圆及公共弦依次交于A,B,C,D,E,
求证:AB·CD=BC·DE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切,
(Ⅰ)求圆的方程;
(Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为,点是坐标原点.直线与圆交于两点.
(1)求的取值范围;
(2)设是线段上的点,且.请将表示为的函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为(  )
A.(x+1)2+y2=2B.(x-1)2+y2=2
C.(x+1)2+y2=4D.(x-1)2+y2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线成轴对称图形,则的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围__________.

查看答案和解析>>

同步练习册答案