精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若上恒成立,求的取值范围,并证明:对任意的,都有

2)设.讨论方程实数根的个数

【答案】1;证明见解析(2)当时,方程有一个实数解;当时,方程有两个不同的实数解;当时,方程没有实数解

【解析】

1上恒成立,分离参数得,只需,设,利用求导求出其最大值为,因此;根据所证明不等式的结构特征,取上成立,令,即可证明不等式;

2)由,分离参数可得,设,通过求导求出单调区间,极值最值,以及函数值变化趋势,即可求出结论.

1)由可得,

,则

时,单调递增,

时,单调递减,

处取得极大值,也是最大值,

要使,只需

的取值范围为

显然,当时,有

即不等式上成立,

,则有

所以

即:

2)由可得,

,令

时,单调递增,

时,单调递减,

处取得极大值,也是最大值,

又当时,,当时,

所以,当时,方程有一个实数解;

时,方程有两个不同的实数解;

时,方程没有实数解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

空气质量

轻度污染

中度污染

重度污染

严重污染

如图是某市121-20AQI指数变化趋势:

下列叙述正确的是(

A.20天中AQI指数值的中位数略高于100

B.20天中的中度污染及以上的天数占

C.该市12月的前半个月的空气质量越来越好

D.总体来说,该市12月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为.

1)求的值;

2)试推断方程是否有实数解?若有实数解,请求出它的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节前后,一场突如其来的新冠肺炎疫情在全国蔓延.疫情就是命令,防控就是责任.在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,掀起了一场坚决打赢疫情防控阻击战的人民战争.下图表展示了214日至29日全国新冠肺炎疫情变化情况,根据该折线图,下列结论正确的是(

A.16天中每日新增确诊病例数量呈下降趋势且19日的降幅最大

B.16天中每日新增确诊病例的中位数小于新增疑似病例的中位数

C.16天中新增确诊、新增疑似、新增治愈病例的极差均大于2000

D.19日至29日每日新增治愈病例数量均大于新增确诊与新增疑似病例之和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是(  )

A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”

B.x=-1”是“x2-5x-6=0”的必要不充分条件

C.命题“若xy,则sin x=sin y”的逆否命题为真命题

D.命题“x0∈R使得”的否定是“x∈R,均有x2x+1<0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于,,使得成立,则称集合M是“互垂点集”.给出下列四个集合:;;;.其中是“互垂点集”集合的为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案