【题目】已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设是过原点的直线,是与n垂直相交于点,与椭圆相交于两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1);(2)答案见解析.
【解析】试题分析:(Ⅰ)由构成等差数列可得, ,.又,,从而可得结果;(Ⅱ)先证明当与轴垂直时,不合题意,当与x轴不垂直时,设的方程为,由与垂直相交于 点且,得,利用韦达定理以及平面向量数量积公式,可得,矛盾,故此时的直线也不存在.
.试题解析:(Ⅰ)依题意,设椭圆的方程为.
构成等差数列,
,.
又,.
椭圆的方程为.
(Ⅱ)设两点的坐标分别为,,
假设存在直线使成立,
(ⅰ)当与轴垂直时,满足的直线的方程为或
当时,的坐标分别为,,.
∴
当时,同理可得,
即此时的直线不存在.
(ⅱ)当与轴不垂直时,设的方程为,
由与垂直相交于点且,得.
因为,,
,.
将代入椭圆方程,得
由根与系数的关系得: ,
即,矛盾,故此时的直线也不存在.
综上可知,使成立的直线不存在.
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部分(包括边界)运动.若,其中,则 的取值范围是( )
A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60 min的学生称为“书虫”,低于60 min的学生称为“懒虫”,
(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和具有线性相关关系.
(Ⅰ)求关于的线性回归方程;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)
参考数据及公式: , ,
, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的双曲线 的右焦点为 ,右顶点为 ,( 为原点)
(1)求双曲线 的方程;
(2)若直线 : 与双曲线恒有两个不同的交点 和 ,且,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形为菱形,对角线与的交点为,四边形为梯形, .
(Ⅰ)若,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,求与平面所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点, 且(为坐标原点)?若存在,写出该圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的部分图象如图所示,分别是图象的最低点和最高点,.
(1)求函数的解析式;
(2)将函数的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求函数的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com