精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x-3+sinx+1.若f(a)=3,则f(-a)=-1.

分析 化简可得f(x)-1=x-3+sinx是奇函数,从而解得.

解答 解:∵f(x)-1=x-3+sinx是奇函数,
又∵f(a)-1=3-1=2,
∴f(-a)-1=-2,
∴f(-a)=-1;
故答案为:-1.

点评 本题考查原函数构造了奇函数f(x)-1,从而利用函数的奇偶性求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数$y=2sin(\frac{π}{3}-\frac{1}{2}x)$
(1)求函数的最大值与最小值,并写出取最大值与最小值时自变量x的集合.
(2)求函数的单调增区间
(3)求函数在$x∈[-\frac{π}{6},\frac{π}{6}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“a>2“是“直线l:y=k(x-a)能成为圆x2+y2-2x=0的切线”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知 f(x)、g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=2x+x,则f(1)+g(1)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x|x-a|+b,x∈R.
(1)当b=0时,判断f(x)的奇偶性,并说明理由;
(2)当a=1,b=1时,若f(2x)=$\frac{5}{4}$,求x的值;
(3)若-1≤b<0,且对任意x∈[0,1]不等式 f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角A是△ABC的一个内角,若sinA+cosA=$\frac{7}{13}$,则tanA等于-$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)的最小正周期、递减区间和递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数a,b满足a,b>0,n为偶数,求证:$\frac{{b}^{n-1}}{{a}^{n}}$+$\frac{{a}^{n-1}}{{b}^{n}}$≥$\frac{1}{a}$+$\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若ax2+bx+3<0的解集为{x|x<-$\frac{2}{3}$或x>1},则a=-$\frac{9}{2}$,b=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案