精英家教网 > 高中数学 > 题目详情

在△ABC中,tanAtanB>1,则△ABC是________.

锐角三角形
分析:利用两角和的正切函数公式表示出tan(A+B),根据A与B的范围以及tanAtanB>1,得到tanA和tanB都大于0,即可得到A与B都为锐角,然后判断出tan(A+B)小于0,得到A+B为钝角即C为锐角,所以得到此三角形为锐角三角形.
解答:因为A和B都为三角形中的内角,
由tanAtanB>1,得到1-tanAtanB<0,
且得到tanA>0,tanB>0,即A,B为锐角,
所以tan(A+B)=<0,
则A+B∈(,π),即C都为锐角,
所以△ABC是锐角三角形.
故答案为:锐角三角形
点评:此题考查学生灵活运用两角和的正切函数公式化简求值,是一道基础题.本题的关键是得到tanA和tanB都大于0,进而得到A和B都为锐角.
练习册系列答案
相关习题

科目:高中数学 来源:数学教研室 题型:022

在△ABC中,tan B=1,tan C=2,b=100,则a=_______.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:022

在△ABC中,tan B=1,tan C=2,b=100,则a=__________.

查看答案和解析>>

科目:高中数学 来源:浙江省湖州中学2010届高三下学期第一次月考数学理科试题 题型:013

在△ABC中,tan=0,则过点C,以A、H为两焦点的椭圆的离心率为

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:浙江省湖州中学2010届高三下学期第一次月考数学文科试题 题型:013

在△ABC中,tan=0,=0,则过点C,以A、H为两焦点的椭圆的离心率为

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:0103 期中题 题型:解答题

在△ABC中,tan=2sinC。
(1) 求∠C的大小;
(2) 求y=sinA+sinB+sinC的取值范围。

查看答案和解析>>

同步练习册答案