为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 76 | 81 |
(I)35 ;(II)①21件; ②所以随机变量的分布列为
.0 1 2
解析试题分析:(I)根据分层抽样的特点:每层按比例抽样,即各层样本数与该层总体数的比值相等,可得到乙厂产品数量.(II)①,根据列表统计优等品的频数,根据频数与容量之比=频率,易知乙厂优等品数量21件。②根据简单随机抽样中随机变量的分布,确定的可能取值情况,再列出随机变量的分布列易求均值.
试题解析:(I)设乙厂生产的产品数量为x件,由题意得,所以;
(II)①由题意知乙厂生产的优等品的数量为件;②由题意知乙厂抽取的5件产品中共有3件优等品,随机抽取两件,易知随机变量,,,,所以随机变量的分布列为0 1 2
所以随机变量的期望 .
考点:1、分层抽样的性质和公式 2、简单随机变量的分布列及均值.
科目:高中数学 来源: 题型:解答题
小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为.若就参加学校合唱团,否则就参加学校排球队.
(I)求小波参加学校合唱团的概率;
(II)求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以4比1获胜的概率;
(2)求乙获胜且比赛局数多于5局的概率;
(3)求比赛局数的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表
班级 | 一 | 二 | 三 | 四 |
人数 | 3 | 2 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学成绩x | 80 | 75 | 70 | 65 | 60 |
物理成绩y | 70 | 66 | 68 | 64 | 62 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了调査某大学学生在某天上网的时间,随机对lOO名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表l:男生上网时间与频数分布表
表2:女生上网时间与频数分布表
(I)从这100名男生中任意选出3人,其中恰有1人上网时间少于60分钟的概率;
(II)完成下面的2X2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
表3:
•
附:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
今年我国部分省市出现了人感染H7N9禽流感确诊病例,各地家禽市场受其影响生意冷清.A市虽未发现H7N9疑似病例,但经抽样有20%的市民表示还会购买本地家禽.现将频率视为概率,解决下列问题:
(Ⅰ)从该市市民中随机抽取3位,求至少有一位市民还会购买本地家禽的概率;
(Ⅱ)从该市市民中随机抽取位,若连续抽取到两位愿意购买本地家禽的市民,或抽取的人数达到4位,则停止抽取,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙两人进行围棋比赛,规定每局胜者得1分,负者得0分,比赛进行到有一方比对方多2分或打满6局时停止.设甲在每局中获胜的概率为,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为.
(Ⅰ)求的值;
(Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
先后2次抛掷一枚骰子,将得到的点数分别记为a, b.
(1)求直线ax+by+5=0与圆 相切的概率;
(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com