精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当设集合求集合

(2)在(1)的条件下,若且满足求实数的取值范围

(3)若对任意的存在使不等式恒成立求实数的取值范围

【答案】(1) (2) (3) 实数的取值范围为

【解析】试题分析:(1)由时,由,解对数不等式即得(2)由,所以 可转化为: 上恒成立,解得实数的取值范围(3)对任意的,存在,使不等式恒成立,等价于 时, ,分情况进行讨论即可得解.

试题解析:

(1)由时,由,即,解得,所以

(2)由,所以 可转化为: 上恒成立,解得实数的取值范围为

(3)对任意的,存在,使不等式恒成立,等价于

时,

时,由复合函数的单调性可知上的减函数, 上的增函数, 等价于,即,解得

时, 上的增函数, 上的减函数, 等价于,即,解得

综上,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA+acosB=0.
(1)求角B的大小;
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知首项为 的等比数列 是递减数列,且 成等差数列;数列 的前 项和为 ,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)已知 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只小船以的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以的速度前进(如图),现在小船在水平面上的点以南的40米处,汽车在桥上点以西的30米处(其中水平面),请画出合适的空间图形并求小船与汽车间的最短距离.(不考虑汽车与小船本身的大小)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为R
(1)当a=2时,求函数f(x)的值域
(2)若函数f(x)是奇函数,①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在(1+x+x2n= x x2+… xr+… x2n1 x2n的展开式中,把D ,D ,D …,D …,D 叫做三项式系数
(1)求D 的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C =(C 2+(C 2+(C 2+…+(C 2 , 利用上述思想方法,请计算D C ﹣D C +D C ﹣…+(﹣1)rD C +.. C C 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图动点P从单位正方形ABCD顶点A开始顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的取值范围是

查看答案和解析>>

同步练习册答案