精英家教网 > 高中数学 > 题目详情
6.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列结论错误的是④.(填序号)
①AC∥平面BEF;
②B、C、E、F四点不可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④直线EF与AC所成角可能为15°.

分析 根据折叠前后线段、角的变化情况,用线面平行、面面垂直的判定定理和性质定理进行判定.

解答 解:对于①,在图2中记AC与BD的交点(中点)为O,取BE的中点为M,连结MO,易证得四边形AOMF为平行四边形,即AC∥FM,∴AC∥平面BEF,故①正确;
对于②,如果四点共面,则Y由BC∥平面ADEF⇒BC∥EF∥AB⇒BC=EF,与已知矛盾,故②正确;
对于③,在梯形ADEF中,易得EF⊥FD,又EF⊥CF,∴EF⊥平面CDF,即有CD⊥EF,∴CD⊥平面ADEF,则平面ADEF⊥平面ABCD,故③正确;
对于④,以D点为原点,DA,DC分别为x,y轴建立空间直角坐标系,利用向量法求直线EF与AC所成角,故④错误.
故答案为:④

点评 本题考查了线面平行、面面垂直的判定定理和性质定理的运用.考查了学生的空间想象能力和推理能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下面进位制之间转化错误的是(  )
A.31(4)=62(2)B.101(2)=5(10)C.119(10)=315(6)D.27(8)=212(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.三个互不重合的平面,最多能把空间分成n部分,n的值是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|+|x+b|(a>0,b>0).
(Ⅰ)若a=1,b=2,解不等式f(x)≤5;
(Ⅱ)若f(x)的最小值为3,求$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=(1+ai)(1-i)为纯虚数,i是虚数单位,则实数a的值是-1,|$\overline{z}+i$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$与向量$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2,|$2\overrightarrow a+\overrightarrow b$|=2$\sqrt{13}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a$=(sin(x+$\frac{π}{3}$),sin(x-$\frac{π}{6}$)),$\overrightarrow b$=(cos(x-$\frac{π}{6}$),cos(x+$\frac{π}{3}$)),$\overrightarrow a$•$\overrightarrow b$=$\frac{5}{13}$,且x∈[-$\frac{π}{3}$,$\frac{π}{6}$],则sin2x的值为(  )
A.$\frac{{5\sqrt{3}+12}}{26}$B.$\frac{{5\sqrt{3}-12}}{26}$C.$\frac{{5+12\sqrt{3}}}{26}$D.$\frac{{5-12\sqrt{3}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知-$\frac{π}{2}$<$\frac{α}{2}$<0,sinα=-$\frac{4}{5}$.
(1)求tanα的值;
(2)求cos2α+sin($\frac{π}{2}$-α)的值.

查看答案和解析>>

同步练习册答案