精英家教网 > 高中数学 > 题目详情

【题目】中国古代算书《孙子算经》中有一著名的问题:今有物,不知其数.三三数之剩二;五五数之剩三;七七数之剩二.问物几何?后来,南宋数学家秦九昭在其《数书九章》中对此问题的解法做了系统的论述,并称之为“大衍求一术”.如图程序框图的算法思路源于“大衍求一术”,执行该程序框图,若输入的a,b的值分别为40,34,则输出的c的值为(
A.7
B.9
C.20
D.22

【答案】C
【解析】解:模拟执行程序运行过程,如下; a=40,b=34,r=6,c=1,m=0,n=1,
满足r≠0,a=34,b=6,r=4,q=5,m=1,n=1,c=6,
满足r≠0,a=6,b=4,r=2,q=1,m=1,n=6,c=7,
满足r≠0,a=4,b=2,r=0,q=2,m=6,n=7,c=20,
不满足r≠0,退出循环,输出c的值为20.
故选:C.
模拟执行程序运行过程,即可得出程序运行后输出的c值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司在迎新年晚会上举行抽奖活动,有甲,乙两个抽奖方案供员工选择. 方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为 ,第一次抽奖,若未中奖,则抽奖结束,若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得1000元;若未中奖,则所获得奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获得奖金400元.
(Ⅰ)求某员工选择方案甲进行抽奖所获奖金X(元)的分布列;
(Ⅱ)试比较某员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国建“精准扶贫,产业扶贫”的战略,某市面向全国征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示
(1)求图中x的值
(2)在抽出的100名志愿者中按年龄采取分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为Y,求Y的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】min(a,b)表示a,b中的最小值,执行如图所示的程序框图,若输入的a,b值分别为4,10,则输出的min(a,b)值是(
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=eax1﹣ax2 , a为不等于零的常数.
(Ⅰ)当a<0时,求函数f′(x)的零点个数;
(Ⅱ)若对任意x1 , x2 , 当x1<x2时,f(x2)﹣f(x1)>a( ﹣2x1)(x2﹣x1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 且满足2Sn=2n+1+λ(λ∈R). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为 .现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数: 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次考试中,5名同学的数学、物理成绩如表所示:

学生

A

B

C

D

E

数学(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根据表中数据,求物理分y关于数学分x的回归方程,并试估计某同学数学考100分时,他的物理得分;

(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X表示选中的同学中物理成绩高于90分的人数,试解决下列问题:

①求至少选中1名物理成绩在90分以下的同学的概率;

②求随机变变量X的分布列及数学期望

附:回归方程:

查看答案和解析>>

同步练习册答案