精英家教网 > 高中数学 > 题目详情

【题目】已知向量m (sin ,1), =(1, cos ),函数f(x)=
(1)求函数f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.

【答案】
(1)解:f(x)=sin + cos =2sin( + ),

∴f(x)的最小正周期T= =4π


(2)解:∵f(α﹣ )=2sin( )= ,∴sin =

∴cosα=1﹣2sin2 =

∴f(2α )=2sin(α+ )=2cosα=


【解析】(1)根据平面向量的数量积公式得出f(x)的解析式并化简,利用三角函数的周期公式得出;(2)由条件可得sin = ,利用二倍角公式得出cosα,根据诱导公式化简f(2α+ )即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是公差不为零的等差数列,满足数列的通项公式为

1)求数列的通项公式;

2将数列,中的公共项按从小到大的顺序构成数列请直接写出数列的通项公式;

3是否存在正整数 ,使得成等差数列?若存在,求出的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2+ ac=b2 , sinA=
(1)求sinC的值;
(2)若a=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项不为零的数列{an}的前n项和为Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比数列,求实数p的值;
(2)若a1 , a2 , a3成等差数列,
①求数列{an}的通项公式;
②在an与an+1间插入n个正数,共同组成公比为qn的等比数列,若不等式(qnn+1)(n+a≤e对任意的n∈N*恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,直线l的参数方程为 (t为参数, ),以坐标原点o为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线
(1)若直线l曲线 相交于点 ,证明: 为定值;
(2)将曲线 上的任意点 作伸缩变换 后,得到曲线 上的点 ,求曲线 的内接矩形 周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分),以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界线符合函数y=x+ (x>0)模型,园区服务中心P在x轴正半轴上,PO= 百米.
(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;
(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设区间D=[﹣3,3],定义在D上的函数f(x)=ax3+bx+1(a>0,b∈R),集合A={a|x∈D,f(x)≥0}.
(1)若b= ,求集合A;
(2)设常数b<0 ①讨论f(x)的单调性;
②若b<﹣1,求证:A=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某淘宝商城在2017年前7个月的销售额 (单位:万元)的数据如下表,已知具有较好的线性关系.

1关于的线性回归方程;

2分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.

:回归直线的斜率和截距的最小二乘估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=e2x , g(x)=lnx+ ,对a∈R,b∈(0,+∞),使得f(a)=g(b),则b﹣a的最小值为

查看答案和解析>>

同步练习册答案