精英家教网 > 高中数学 > 题目详情
5.已知实数a>0,且函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.

分析 根据题意,由于函数f(x)是定义在R上的奇函数,则有f(0)=0,代入数据,计算可得a的值,对f(x)的表达式变形,用作差法判断函数单调性即可.

解答 解:∵函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数,实数a>0,
∴有f(0)=0,即$\frac{1-a}{1+a}$=0,解可得a=1,∴f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$;
f(x)=1-$\frac{2}{{2}^{x}+1}$
理由:设x1<x2
则f(x1)-f(x2)=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$,
∵x1<x2,∴f(x1)-f(x2)<0,
∴f(x)是增函数.

点评 本题考查函数的单调性、奇偶性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.cos$\frac{2017π}{6}$的值是(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.经过抛物线y=4x2的焦点作直线l交该抛物线于A(x1,y1),B(x2,y2)两点,若y1+y2=2,则线段AB的长等于$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程ex=2-x的解所在的一个区间为(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a•2x+b的图象过点$A({1,\frac{3}{2}})$,$B({2,\frac{5}{2}})$.
(1)求函数y=f(x)的反函数y=f-1(x)的解析式;
(2)若$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$,求使得F(x)≤0的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=|x+1|+|x-a|的最小值为5,则实数a=4或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=\left\{\begin{array}{l}|{x+1}|\;,\;\;x≤-1\\ 2x\;,\;\;-1<x<2\\ x-1\;,\;\;x≥2\end{array}\right.$,则f[f(-2)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=5与y=-1在区间$[{0\;,\;\;\frac{4π}{ω}}]$上截曲线$y=msin\frac{ω}{2}x+n({m>0\;,\;\;n>0})$所得弦长相等且不为零,则下列描述正确的是(  )
A.$m≤\frac{3}{2}\;,\;\;n=\frac{5}{2}$B.m≤3,n=2C.$m>\frac{3}{2}$D.m>3,n=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4
(1)求证:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

查看答案和解析>>

同步练习册答案