精英家教网 > 高中数学 > 题目详情
11.“$\frac{1}{x}≥1$”是“2x-1≤1”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 分别解不等式,结合集合的包含关系判断即可.

解答 解:由$\frac{1}{x}≥1$,解得:0<x≤1,
由2x-1≤1,解得:x≤1,
故“$\frac{1}{x}≥1$”是“2x-1≤1”成立的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=1,点E是B1C1的中点,则异面直线AC1与BE所成角的大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各函数中,最小值为2的是(  )
A.$y=x+\frac{1}{x}$,x≠0且x∈RB.$y=\frac{sinx}{2}+\frac{2}{sinx}$,x∈(0,π)
C.$y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$,x∈RD.y=ex+e-x,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在平面直角坐标系中,正方形OABC边长为4,M(4,m)、N(n,4)分别是AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sinα-sinβ=$\frac{{\sqrt{6}}}{3},cosα-cosβ=\frac{{\sqrt{3}}}{3}$,则$|{cos\frac{α-β}{2}}$|=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用|A|表示非空集合A中集合元素个数(例如A={1,3,5},则|A|=3),定义M(a,b)=$\left\{{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}}\right.({a,b∈R})$,若A={B|B⊆{1,2,3}且B中至少有一个奇数},C={x|x2-4|x|+3=0},那么M(|A|,|C|)可能取值的有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{1}{3}≤a≤1$,若函数f(x)=ax2-2x+1的定义域[1,3].
(1)求f(x)在定义域上的最小值(用a表示);
(2)记f(x)在定义域上的最大值为M(a),最小值N(a),求M(a)-N(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若a>b>c>0,则$\sqrt{ab}$,$\sqrt{bc}$,$\sqrt{ac}$,c从小到大的顺序是c<$\sqrt{bc}$<$\sqrt{ac}$<$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出以下四个命题:
①已知命题p:?x∈R,tanx=2;命题q:?x∈R,x2-x+1≥0,则命题p且q是真命题;
②命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;
③命题“x≥1,则x2≥1”的逆命题;
④命题“面积相等的三角形全等”的否命题.
其中正确命题的序号为①②④.(把你认为正确的命题序号都填上)

查看答案和解析>>

同步练习册答案