精英家教网 > 高中数学 > 题目详情
当函数(>0)取最小值时相应的的值等于     

试题分析:根据题意可知,由于函数时取得等号,故可知函数的 最小值为1,此时x的取值为,故答案为
点评:解决的关键是利用一正二定三相等的思想来确定函数的最值以及最值成立的条件,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知函数定义在上且,对于任意实数都有,设函数的最大值和最小值分别为,则=            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的偶函数,上为增函数,且,则不等式的解集为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数处取得最大值,则(  )
A.函数一定是奇函数B.函数一定是偶函数
C.函数一定是奇函数D.函数一定是偶函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域为R,且定义如下:(其中M是实数集R的非空真子集),在实数集R上有两个非空真子集AB满足,则函数的值域为                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数
若函数在区间(a,a+)上存在极值,其中a>0,求实数a的取值范围;
如果当时,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(I)求函数的单调区间;
(Ⅱ)若恒成立,试确定实数k的取值范围;
(Ⅲ)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

不等式选讲已知函数
⑴当时,求函数的最小值;
⑵当函数的定义域为时,求实数的取值范围。

查看答案和解析>>

同步练习册答案