精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,

PAADFPD的中点.

(1)求证:AF⊥平面PDC

(2)求直线AC与平面PCD所成角的大小.

【答案】(1)详见解析;(2).

【解析】1)要证明垂直于平面,由中点,有,还要证与平面内的一条直线垂直,我们选,可由已知先证平面,从而有,最后可得线面垂直;(2)要求直线与平面所成的角,一般要先作出这个角,由(1)知在平面内的射影,因此就是要作的角,在中求出此角即可.

试题解析:(1)∵平面,∴.

∵正方形中,

平面,∴.

,,∴

,∴平面.

(2)连接.

由(1)可知在平面内的射影,

与平面所成的角.

平面,∴.

中,,,

,∴.

故直线与平面所成的角为30°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥P﹣ABCD中, E、F分别为PD、AB的中点,PAB为等腰直角三角形,PA平面ABCD,PA=1.

(1)求证:直线AE平面PFC;

(2)求证:PB⊥FC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且对任意正整数,满足

1)求数列的通项公式.

2)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,且=9S6=60

(I)求数列{an}的通项公式;

II)若数列{bn}满足bn+1bn=n∈N+)且b1=3,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一位同学家里订了一份报纸,送报人每天都在早上6 : 207 : 40之间将报纸送达,该同学需要早上7 : 008 : 00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线xy+2=0的距离为3。

(1)求椭圆的方程;

(2)设直线ykxm(k≠0)与椭圆相交于不同的两点MN。当|AM|=|AN|时,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,底面的中点,的中点.

(1)求证:平面

(2)求异面直线所成角的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列中, ,且.

(1)求数列的通项公式;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列满足 .

(Ⅰ)当时,求证:数列为等差数列并求

(Ⅱ)证明:对于一切正整数

查看答案和解析>>

同步练习册答案