【题目】如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是边长为2的正方形,
PA=AD,F为PD的中点.
(1)求证:AF⊥平面PDC;
(2)求直线AC与平面PCD所成角的大小.
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥P﹣ABCD中, E、F分别为PD、AB的中点,△PAB为等腰直角三角形,PA⊥平面ABCD,PA=1.
(1)求证:直线AE∥平面PFC;
(2)求证:PB⊥FC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列{an}的前n项和为Sn,且=9,S6=60.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn+1﹣bn=(n∈N+)且b1=3,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一位同学家里订了一份报纸,送报人每天都在早上6 : 207 : 40之间将报纸送达,该同学需要早上7 : 008 : 00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点为A(0,-1),焦点在x轴上。若右焦点F到直线x-y+2=0的距离为3。
(1)求椭圆的方程;
(2)设直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N。当|AM|=|AN|时,求m的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com