【题目】高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):
满意度 | 老年人 | 中年人 | 青年人 | |||
乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | 乘坐高铁 | 乘坐飞机 | |
10分(满意) | 12 | 1 | 20 | 2 | 20 | 1 |
5分(一般) | 2 | 3 | 6 | 2 | 4 | 9 |
0分(不满意) | 1 | 0 | 6 | 3 | 4 | 4 |
(span>1)在样本中任取个,求这个出行人恰好不是青年人的概率;
(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;
(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.
【答案】(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析
【解析】
(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,,,即可按照古典概型的概率计算公式计算得出;
(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;
(3)可以计算满意度均值来比较乘坐高铁还是飞机.
(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为,
由表可得:样本中出行的老年人、中年人、青年人人次分别为,,,
所以在样本中任取个,这个出行人恰好不是青年人的概率.
(2)由题意,的所有可能取值为:
因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人
为老年人概率是,
所以,
,
,
所以随机变量的分布列为:
故.
(3)答案不唯一,言之有理即可.
如可以从满意度的均值来分析问题,参考答案如下:
由表可知,乘坐高铁的人满意度均值为:
乘坐飞机的人满意度均值为:
因为,
所以建议甲乘坐高铁从市到市.
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,等比数列的前项和为,且
(1)设,求数列的通项公式;
(2)在(1)的条件下,且,求满足的所有正整数;
(3)若存在正整数,且,试比较与的大小,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中a为常数,e是自然对数的底数,曲线在其与y轴的交点处的切线记作,曲线在其与x轴的交点处的切线记作,且.
(1)求之间的距离;
(2)若存在x使不等式成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
A. 平面平面ABN B.
C. 平面平面AMN D. 平面平面AMN
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,. 对于函数、,若存在常数,,使得,不等式都成立,则称直线是函数与的分界线.
(1)讨论函数的单调性;
(2)当时,试探究函数与是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M是满足下列性质的函数的全体;在定义域内存在实数t,使得.
(1)判断是否属于集合M,并说明理由;
(2)若属于集合M,求实数a的取值范围;
(3)若,求证:对任意实数b,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线(),其准线方程,直线过点(),且与抛物线交于、两点,为坐标原点.
(1)求抛物线方程,并注明:的值与直线倾斜角的大小无关;
(2)若为抛物线上的动点,记的最小值为函数,求的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f (x)=ax﹣ex(a∈R),g(x)=.
(Ⅰ)求函数f (x)的单调区间;
(Ⅱ)x0∈(0,+∞),使不等式f (x)≤g(x)﹣ex成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com