分析 (1)设A表示“抽取到红球”,B表示“取到黄球”,C表示取到绿球,D表示“取到黑球”,由已知条件列出方程组,能求出得到黑球、黄球、绿球的概率.
(2)从中任取一球,得到的不是“红球或绿球”,由此可知得到的是“黑球或黄球”,从而能求出得到的不是“红球或绿球”的概率.
解答 解:(1)设A表示“抽取到红球”,B表示“取到黄球”,C表示取到绿球,D表示“取到黑球”,
则$\left\{\begin{array}{l}{P(A)=\frac{1}{4}}\\{P(B∪D)=P(B)+P(D)=\frac{7}{12}}\\{P(B∪C)=P(B)+P(C)=\frac{4}{12}}\end{array}\right.$,
且P(A)+P(B)+P(C)+P(D)=1,
解得P(B)=$\frac{1}{6}$,P(C)=$\frac{1}{6}$,P(D)=$\frac{5}{12}$.
∴得到黑球、黄球、绿球的概率分别为$\frac{5}{12}$,$\frac{1}{6}$,$\frac{1}{6}$.
(2)∵从中任取一球,得到的不是“红球或绿球”,
∴得到的是“黑球或黄球”,
∴得到的不是“红球或绿球”的概率p=P(B∪D)=$\frac{7}{12}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ②③ | B. | ② | C. | ①②③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-$\frac{1}{3}$) | B. | (-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+∞) | D. | ($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{17}{32}$ | B. | $\frac{37}{64}$ | C. | $\frac{19}{32}$ | D. | $\frac{27}{64}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com