精英家教网 > 高中数学 > 题目详情
8.在极坐标系中,过点M($\sqrt{2}$,$\frac{π}{4}$)的直线l与极轴的夹角α=$\frac{π}{3}$,l的极坐标方程为$\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0.

分析 先把点的极坐标化为直角坐标,再求得直线方程的直角坐标方程,化为极坐标方程.

解答 解:在直角坐标系中,过点M($\sqrt{2}$,$\frac{π}{4}$)的直线l与极轴的夹角α=$\frac{π}{3}$的直线的斜率为$\sqrt{3}$,
其直角坐标方程是y-1=$\sqrt{3}$(x-1),即$\sqrt{3}$x+y-$\sqrt{3}$+1=0,
其极坐标方程为 $\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0,
故答案为:$\sqrt{3}$ρcosθ-ρsinθ-$\sqrt{3}$+1=0,

点评 本题考查极坐标方程与直角坐标方程的互化,求出直角坐标系中直线的方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{x},x>0}\\{{x^3}+9,x≤0}\end{array}}\right.$,若关于x的方程f(x2+2x)=a有6个不同的实根,则实数a的取值范围是(8,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}=(3sinx.\frac{\sqrt{3}}{2}cosx),\overrightarrow{n}=(cosx-\frac{\sqrt{3}}{2}sinx,3cosx)$,函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(Ⅰ)求函数f(x)的解析式,并在给定的坐标系中用“五点法”作出函数f(x)在[0,π]上的图象;(须列表)
(Ⅱ)该函数的图象由y=sinx(x∈R)的图象经过怎样的变化得到?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点O在△ABC内部一点,且满足2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,则三角形△AOB,△BOC,△AOC的面积之比依次为(  )
A.4:2:3B.2:3:4C.4:3:2D.3:4:5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P为圆上的动点.
(1)求线段AP的中点的轨迹方程
(2)求过点B倾斜角为135°的直线截圆所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合U={0,1,2,3},A={0,1,2},B={2,3},则(∁UA)∩B(  )
A.{1,3}B.{2,3}C.{3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C的对边分别为a,b,c,设p:“a:b:c=A:B:C”,q:“△ABC是正三角形”,则(  )
A.p是q的充分不必要条件B.p是q的必要但不充分条件
C.p是q的充要条件D.p是q的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若A=60°,c=4,a=4,则此三角形有(  )
A.两解B.一解C.无解D.无穷多解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设α是第二象限角且cos(90°+α)=-$\frac{4}{5}$,求$\frac{[sin(180°-α)+cos(α-360°)]^{2}}{tan(180°+α)}$的值.

查看答案和解析>>

同步练习册答案