精英家教网 > 高中数学 > 题目详情

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);

.

评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.

2将直径小于等于或直径大于的零件认为是次品.

)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望

)从样本中随意抽取2件零件,计算其中次品个数的数学期望.

【答案】(1)丙;(2)(;(

【解析】

试题分析:(1)利用条件,可得设备的数据仅满足一个不等式,即可得出结论;(2)首先求得样本中次品,()由题意可知然后用数学期望公式求解即可;(首先确定的取值,然后分别求出相应的概率,可求出其中次品个数的数学期望

试题解析:(1)由题意知道:

所以由图表知道:

所以该设备的性能为丙级别.

(2)由图表知道:直径小于或等于的零件有2件,大于的零件有4件共计6件

(i)从设备的生产流水线上任取一件,取到次品的概率为

依题意,故.

(ii)从100件样品中任意抽取2件,次品数的可能取值为0,1,2

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,相交于点,三棱锥的体积为9.

(1)求的值;

(2)过点的平面平行于平面与棱分别相交于点,求截面的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)若点的坐标为,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与四边形相交于平面的中点,.

(1)求证:平面

(2)求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(1)当时,求的单调区间;

(2)若上的最大值为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点

(1)证明:点在定直线上;

(2)当最大时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某老师对全班名学生学习积极性和参加社团活动情况进行调查,统计数据如下所示:

参加社团活动

不参加社团活动

合计

学习积极性高

学习积极性一般

合计

(1)请把表格数据补充完整;

(2)若从不参加社团活动的人按照分层抽样的方法选取人,再从所选出的人中随机选取两人作为代表发言,求至少有一个学习积极性高的概率;

(3)运用独立性检验的思想方法分析:请你判断是否有的把握认为学生的学习积极性与参与社团活动由关系?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,离心率为,右焦点到直线的距离为2.

1)求椭圆的方程;

2)椭圆下顶点为,直线)与椭圆相交于不同的两点,当时,求的取值范围.

查看答案和解析>>

同步练习册答案