精英家教网 > 高中数学 > 题目详情

命题,函数,则:

A.是假命题;

B.是假命题;

C.是真命题;

D.是真命题;

 

【答案】

D

【解析】因为对于任意的实数,不等式成立,其否定为存在实数x,使得不等式不成立,即为选D

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)给出下列命题:
(1)若a>1,则f(x)的定义域是(-∞,
3
a
].
(2)若f(x)在区间(0,1]上是增函数,则实数a的取值范围是(0,1).
(3)f(x)没有极值.
则其中真命题是
(1)(2)(3)
(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都模拟)若函数f(x)在给定区间M上,存在正数t,使得对于任意x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上的t级类增函数,则以下命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
(1)方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
(2)函数f(x)=lg(mx2+mx+1)的定义域为R,则m的取值范围是m∈(0,4);
(3)若函数y=
x2+ax+2
在区间(-∞,1]上是减函数,则实数a∈[-3,-2];
(4)若函数f(3x+1)是偶函数,则f(x)的图象关于直线x=
1
3
对称.
(5)若对于任意x∈(1,3)不等式x2-ax+2<0恒成立,则a>
11
3

其中的真命题是
(1),(3),(5)
(1),(3),(5)
(写出所有真命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•陕西一模)下列三个结论中
①命题p:“对于任意的x∈R,都有x2≥0”,则?p为“存在x∈R,使得x2<0”;②某人5 次上班途中所花的时间(单位:分钟)分别为8、10、11、9、x.已知这组数据的平均数为10,则其方差为2;③若函数f(x)=x2+2ax+2在区间(-∞,4]上是减函数,则实数a的取值范围是(-∞,-4).你认为正确的结论序号为
①②
①②

查看答案和解析>>

同步练习册答案