【题目】如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.
【答案】解:如图所示,过C作CO1⊥AB于O1 , 在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R, ∴AC= R,BC=R,CO1= R,
∴S球=4πR2 ,
=π× R× R= πR2 ,
=π× R×R= πR2 ,
∴S几何体表=S球+ + = πR2 ,
∴旋转所得到的几何体的表面积为 πR2 .
又V球= πR3 , = AO1πCO12= πR2AO1
= BO1πCO12= BO1πR2
∴V几何体=V球﹣( + )= πR3 .
【解析】求出AC= R,BC=R,CO1= R,再求出几何体的表面积;要求旋转后阴影部分的体积即是球的体积减去两个圆锥的体积,根据圆锥的体积公式和球的体积公式进行计算.
【考点精析】通过灵活运用旋转体(圆柱、圆锥、圆台),掌握常见的旋转体有:圆柱、圆锥、圆台、球即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知抛物线(),过其焦点作斜率为1的直线交抛物线于, 两点,且,
(1)求抛物线的方程;
(2)已知动点的圆心在抛物线上,且过点,若动圆与轴交于两点,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (a、b、c∈Z)是奇函数.
(1)若f(1)=1,f(2)﹣4>0,求f(x);
(2)若b=1,且f(x)>1对任意的x∈(1,+∞)都成立,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O为BD中点,点P,Q分别为线段AO,BC上的动点(不含端点),且AP=CQ,则三棱锥P﹣QCO体积的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正三棱柱ABC﹣A1B1C1的棱长都为2,E,F,G为 AB,AA1 , A1C1的中点,则B1F 与面GEF成角的正弦值( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,D为AC的中点,∠ABC=90°,AA1=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2)求三棱锥D﹣BC1C的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。
根据以上信息填好下列联表,并判断出有多大的把握认为学生成绩优良与班级有关?
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。
(以下临界值及公式仅供参考
, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com