精英家教网 > 高中数学 > 题目详情

(本小题14分)已知直线经过椭圆的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点.

(1)求椭圆的方程;    

(2)求证:直线与直线斜率的乘积为定值;

(3)求线段的长度的最小值.

 

【答案】

(1)由已知得,椭圆的左顶点为上顶点为

    故椭圆的方程为                   ……………………………4分

(2)设直线AS的斜率,直线BS的斜率的乘积为=………………..8分

(3)解法一:直线AS的斜率显然存在,且>0,故可设直线的方程为

从而   由(2)知直线BS的方程为

从而,当且仅当,即时等号成立

线段的长度取最小值   ……………………………………………14分

解法二:直线AS的斜率显然存在,且,故可设直线的方程为

从而        由0      

,从而                       

 

   又    当且仅当,即时等号成立

时,线段的长度取最小值   ………………………14分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题14分)已知圆,过点作圆的切线为切点.

(1)求所在直线的方程;

(2)求切线长

(3)求直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市高三第四次月考文科数学试卷(解析版) 题型:解答题

(本小题14分)

已知等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求使  成立的正整数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市高新区高三2月月考理科数学试卷(解析版 题型:解答题

(本小题14分)已知函数,设

(Ⅰ)求F(x)的单调区间;

(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。

(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三上学期月考理科数学 题型:解答题

(本小题14分)已知函数的图像与函数的图像关于点

 

对称

(1)求函数的解析式;

(2)若在区间上的值不小于6,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题

(本小题14分)

已知函数的图像在[a,b]上连续不断,定义:

,其中表示函数在D上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数上的“k阶收缩函数”

(1)若,试写出的表达式;

(2)已知函数试判断是否为[-1,4]上的“k阶收缩函数”,

如果是,求出对应的k,如果不是,请说明理由;

已知,函数是[0,b]上的2阶收缩函数,求b的取值范围

 

查看答案和解析>>

同步练习册答案