精英家教网 > 高中数学 > 题目详情

【题目】(1)已知全集U={2,4,a2a+1},A={a+4,4},UA={7},则a________.

(2)a>0a≠1时,函数必过定点_______

(3)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:

明文密文密文明文

己知加密为yax-2(x为明文、y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方接到密文为“14”,则原发的明文是________

(4)已知3a=5b=M,且,则M的值为______________

【答案】-2 (2,-2) 4

【解析】

(1)UA={7},可得a2a+1=7,解得a再检验即可得解;

(2)即可得定点;

(3)由,x=3时,y=6,代入条件可得函数解析式,再令y=14,求解x即可;

(4)由题意可知,再代入条件,利用换底公式即可得解.

(1)解:已知全集U={2,4,a2-a+1},A={a+4,4},UA={7},

∴a2-a+1=7,解得a=-2,a=3,

a=3时,a+4=7,∴A={7,4},不合题意舍去,

∴a=-2.

故答案为-2.

(2)解:当a>0a≠1时,函数,当x=2时,f(2)=a0-3=-2,

函数必过定点(2,-2).

故答案为(2,-2).

(3)由题意,对于y=ax-2中,x=3时,y=6,即a3-2=6,解得a=2,

函数y=2x-2,当y=14时,有2x-2=14,解得x=4.

即原发的明文是4.

故答案为4.

(4)解:∵3a=5b=M,∴.,

代入,得,则

,解得M=.

故答案为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有关于x的一元二次方程x2+2ax+b2=0.

(1)a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.

(2)a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方形ABCD中,AB=AD=2,M,N分别是边BC,CD上的动点,且MN= ,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,

(1)求实数m的值;

(2)判断函数的单调性并用定义法加以证明;

(3)若函数上的最小值为,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C1 (t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 cosθ.
(1)求C2与C3交点的直角坐标;
(2)若C2与C1相交于点A,C3与C1相交于点B,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=fx)为二次函数,若y=fx)在x=2处取得最小值﹣4,且y=fx)的图象经过原点,

(1)求fx)的表达式;

(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,则sinC的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间t(单位:小时)与储藏温度x(单位:)满足函数关系且该食品在4的保鲜时间是16小时.

已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:

该食品在6的保鲜时间是8小时;

x[66]时,该食品的保鲜时间t随着x增大而逐渐减少;

到了此日13时,甲所购买的食品还在保鲜时间内;

到了此日14时,甲所购买的食品已然过了保鲜时间.

其中,所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于不同的两点.

(1)如果直线过抛物线的焦点,求的值;

(2)如果 ,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

同步练习册答案