精英家教网 > 高中数学 > 题目详情
(2012•石家庄一模)有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.
据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如下表:
所用的时间(天数) 10 11 12 13
通过公路1的频数 20 40 20 20
通过公路2的频数 10 40 40 10
假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发.
(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;
(II)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其它费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,销售商将少支付给生产商2万元.如果汽车A、B长期按(I)所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.
(注:毛利润=(销售商支付给生产商的费用)-(一次性费用))
分析:(I)求出频率分布表,计算汽车A在约定日期(某月某日)的前11天出发选择公路1,2将货物运往城市乙的概率;汽车B在约定日期(某月某日)的前12天出发选择公路1,2将货物运往城市乙的概率,即可得到结论;
(II)分别确定汽车A、B为生产商获得毛利润的概率分布列,求出期望,比较期望值,即可得到结论.
解答:解:(I)频率分布表,如下:
所用的时间(天数) 10 11 12 13
通过公路1的频数 0.2 0.4 0.2 0.2
通过公路2的频数 0.1 0.4 0.4 0.1
设A1,A2分别表示汽车A在约定日期(某月某日)的前11天出发选择公路1,2将货物运往城市乙;B1,B2分别表示汽车B在约定日期(某月某日)的前12天出发选择公路1,2将货物运往城市乙.
∵P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,∴汽车A选择公路1,
∵P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∴汽车A选择公路2;
(II)设X表示汽车A选择公路1,销售商支付给生产商的费用,则X=42,40,38,36
X的分布列如下:
 X  42  40  38 36 
 P  0.2  0.4  0.2  0.2
∴E(X)=42×0.2+40×0.4+38×0.2+36×0.2=39.2
∴汽车A选择公路1时的毛利润为39.2-3.2=36.0(万元)
设Y为汽车B选择公路2时的毛利润,则Y=42.4,40.4,38.4,36.4
分布列如下
 Y  42.4  40.4  38.4 36.4
 P  0.1  0.4  0.4  0.1
∴E(Y)=42.4×0.1+40.4×0.4+38.4×0.4+36.4×0.1=39.4
∵36.0<39.4
∴汽车B为生产商获得毛利润更大.
点评:本题考查离散型随机变量的分布列和期望,考查比较两个变量的期望值,得到最优思路,是一个利用概率知识解决实际问题的题目,是一个综合题目
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•石家庄一模)已知点P在曲线y=ex(e为自然对数的底数)上,点Q在曲线y=lnx上,则丨PQ丨的最小值是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)复数
1+i
1-i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)抛物线的x2=16y焦点坐标为
(0,4)
(0,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)函数f(x)=Asin(ωx+φ)(A,ω,φ)为常数,A>0,ω>0的部分图象如图所示,则f(0)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)的值是(  )

查看答案和解析>>

同步练习册答案