【题目】已知两点M(﹣3,0),N(3,0),点P为坐标平面内一动点,且,则动点P(x,y)到两点A(﹣3,0)、B(﹣2,3)的距离之和的最小值为( )
A. 4 B. 5 C. 6 D.
【答案】B
【解析】
首先利用向量数量积的运算求出抛物线的方程,然后根据抛物线的定义再将动点P(x,y)到点A(﹣3,0)的距离转化为到焦点的距离,进而转化为到准线的距离,如图.再由抛物线的性质知:当B,C和P三点共线的时候距离之和最小,从而得到答案.
设P(x,y),因为M(﹣3,0),N(3,0),
所以,,=(6,0),
由,则,
化简整理得y2=﹣12x,其焦点坐标为(﹣3,0),
所以点A是抛物线y2=﹣12x的焦点,
过P作准线x=3的垂线,垂足为C,
则动点P(x,y)到两点A(﹣3,0)、B(﹣2,3)的距离之和等于动点P(x,y)到点B(﹣2,3)和到直线x=3的距离之和,
依题意可知当B,C和P三点共线的时候,距离之和最小,如图,
最小值为:3﹣(﹣2)=5.
故选:B.
科目:高中数学 来源: 题型:
【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的频率;
(2)估计本次考试的中位数;
(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的两个焦点坐标分别为F1(-,0)和F2(,0),且椭圆过点
(1)求椭圆方程;
(2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点,证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD= , AB=2,CD=3,M为PC上一点,PM=2MC.
(Ⅰ)证明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求二面角D﹣MB﹣C的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC的内角A,B,C的对边,若△ABC的周长为2(+1),且sin B+sin C=sin A,则a= ( )
A. B. 2 C. 4 D.
【答案】B
【解析】
根据正弦定理把转化为边的关系,进而根据△ABC的周长,联立方程组,可求出a的值.
根据正弦定理,可化为
∵△ABC的周长为,
∴联立方程组,
解得a=2.
故选:B
【点睛】
(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.
(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.
【题型】单选题
【结束】
7
【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=2,前3项和S3=.
(1)求{an}的通项公式;
(2)设等比数列{bn}满足b1=a1,b4=a15,求{bn}的前n项和Tn.
【答案】(1)an=.(2)Tn=2n-1.
【解析】试题分析:(1)根据等差数列的基本量运算解出和,代入公式算出等差数列的通项公式;(2)计算出等比数列的首项和公比,代入求和公式计算.
试题解析:
(1)设{an}的公差为d,由已知得
解得a1=1,d=,
故{an}的通项公式an=1+,即an=.
(2)由(1)得b1=1,b4=a15==8.
设{bn}的公比为q,则q3==8,从而q=2,
故{bn}的前n项和Tn==2n-1.
点睛:本题考查等差数列的基本量运算求通项公式以及等比数列的前n项和,属于基础题. 在数列求和中,最常见最基本的求和就是等差数列、等比数列中的求和,这时除了熟练掌握求和公式外还要熟记一些常见的求和结论,再就是分清数列的项数,比如题中给出的,以免在套用公式时出错.
【题型】解答题
【结束】
20
【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;④测量∠A,∠C,∠B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com