【题目】如图,在直四棱柱ABCD-A1B1C1D1中,AD//平面BCC1B1,AD⊥DB.求证:
(1)BC//平面ADD1A1;
(2)平面BCC1B1⊥平面BDD1B1.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由直线与平面平行的性质可得:由AD//平面BCC1B1,有AD//BC,同时AD平面ADD1A1,可得BC//平面ADD1A1;
(2)由(1)知AD//BC,因为AD⊥DB,所以BC⊥DB,同时由直四棱柱性质可得DD1⊥BC,BC⊥平面BDD1B1,可得证明.
解:(1)因为AD//平面BCC1B1,AD平面ABCD,平面BCC1B1∩平面ABCD=BC,
所以AD//BC.
又因为BC平面ADD1A1,AD平面ADD1A1,
所以BC//平面ADD1A1.
(2)由(1)知AD//BC,因为AD⊥DB,所以BC⊥DB,
在直四棱柱ABCD-A1B1C1D1中DD1⊥平面ABCD,BC底面ABCD,
所以DD1⊥BC,
又因为DD1平面BDD1B1,DB平面BDD1B1,DD1∩DB=D,
所以BC⊥平面BDD1B1,
因为BC平面BCC1B1,
所以平面BCC1B1⊥平面BDD1B1
科目:高中数学 来源: 题型:
【题目】平面外ABC的一点P,AP、AB、AC两两互相垂直,过AC的中点D做ED⊥面ABC,且ED=1,PA=2,AC=2,连接BP,BE,多面体B﹣PADE的体积是;
(1)画出面PBE与面ABC的交线,说明理由;
(2)求面PBE与面ABC所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和都是等差数列,.数列满足.
(1)求的通项公式;
(2)证明:是等比数列;
(3)是否存在首项为1,公比为q的等比数列,使得对任意,都有成立?若存在,求出q的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为1的正方形 沿 轴滚动(向右为顺时针,向左为逆时针).设顶点 的轨迹方程是,则关于的最小正周期及在其两个相邻零点间的图像与x轴所围区域的面积S的正确结论是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R的奇函数,其中a是常数.
(1)求常数a的值;
(2)设关于x的函数有两个不等的零点,求实数b的取值范围;
(3)求函数在上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com