精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上单调递减.
(1)写出f(x)在R上的单调性(不用证明);
(2)若f(1-a)+f(2a-5)<0,请求出实数a的取值范围.

分析 (1)由奇函数的性质可得f(x)在R上递减;
(2)f(x)在R上递减,原不等式即为f(1-a)<f(-2a+5),则1-a>-2a+5,即可得到取值范围.

解答 解:(1)函数f(x)是定义在R上的奇函数,
且在区间[0,+∞)上是单调减函数,
则f(x)在(-∞,0)上递减,
即有f(x)在R上递减;  
(2)不等式f(1-a)+f(2a-5)<0,
即为f(1-a)<f(-2a+5)
则1-a>-2a+5,
解得a>4.
则a的取值范围为(4,+∞).

点评 本题考查函数的奇偶性和单调性的判断,考查不等式的解法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图所示,PA垂直于圆O所在平面,AB是圆O的直径,C是圆O上一点,点A在PB,PC上的射影分别为E,F,则以下结论错误的是(  )
A.PB⊥AFB.PB⊥EFC.AF⊥BCD.AE⊥BC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知m为实数,函数f(x)=$\frac{2m}{3}$x3+x2-3x-mx+2,g(x)=f′(x),f′(x)是f(x)的导函数.
(1)当m=1时,求f(x)的单调区间;
(2)若g(x)在区间[-1,1]上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知离散型随机变量x的分布列如下:
x123
p$\frac{1}{3}$a$\frac{1}{6}$
则x的数学期望E(x)=(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$2a+\frac{5}{6}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.快递员通知小张中午12点到小区门口取快递,由于工作原因,快递员于11:50到12:10之间随机到达小区门口,并停留等待10分钟,若小张于12:00到12:10之间随机到达小区门口,也停留等待10分钟,则小张能取到快递的概率为(  )
A.$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l1:ax+(a+2)y+1=0,l2:x+ay+2=0(a∈R),则“l1∥l2”是“a=-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在f1(x)=x${\;}^{\frac{1}{2}}$,f2(x)=x2,f3(x)=2x,f4(x)=log${\;}_{\frac{1}{2}}$x四个函数中,当x1>x2>1时,使$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立的函数是f1(x)=x${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在以原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C1的极坐标方程为ρ2cos2θ+8ρcosθ=ρ2+8.
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)曲线C2的方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数),若曲线C1与曲线C2交于A、B两点,且|AB|=8,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中与函数y=x0表示同一函数的是(  )
A.y=1B.y=$\frac{(\sqrt{x})^{2}}{x}$C.y=$\frac{x}{x}$D.y=$\frac{|x|+1}{|x|+1}$

查看答案和解析>>

同步练习册答案