精英家教网 > 高中数学 > 题目详情
椭圆中心在原点,焦点在坐标轴上,有两顶点的坐标是,椭圆的方程是
A.B.
C.D.
C
解:因为椭圆中心在原点,焦点在坐标轴上,有两顶点的坐标是,则可知a=4,b=2,则根据焦点在x轴上,则椭圆的方程是,选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分
已知椭圆的离心率为,以原点为圆心,
椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆
于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线与双曲线的左右两支分别交于两点,与双曲线的右准线相交于点,为右焦点,若,又,则实数的值为
A.B.1C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知倾斜角的直线过椭圆的右焦点F交椭圆于A、B两点,P为右准线上任意一点,则为 ( )
A.钝角;     B.直角;     C.锐角;     D.都有可能;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,,动点P的轨迹为曲线E,曲线E过点C且满足|PA|+|PB|为常数。
(1)求曲线E的方程;
(2)是否存在直线L,使L与曲线E交于不同的两点M、N,且线段MN恰被直线平分?若存在,求出L的斜率的取值范围;若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的左顶点为A1,右焦点为F2,点P为该椭圆上一动点,则当取最小值时,的值为(  )
A.B.3C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的焦点与椭圆的焦点重合,则此双曲线的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为椭圆的两个焦点,以为圆心作圆,已知圆经过椭圆的中心,且与椭圆相交于点,若直线恰与圆相切,则该椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案