精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

(1)求证:

(2)若的中点,且二面角的余弦值为,求与平面所成角的正弦值.

【答案】(1)见解析; (2).

【解析】

(1)先求证AC⊥平面PBD,再证AC⊥DE.(2)先证明 EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,再利用向量法求出EC与平面PAB所成角的正弦值.

(1)因为DP⊥平面ABCD,所以DP⊥AC,

因为四边形ABCD为菱形,所以BD⊥AC,

又BD∩PD=D,∴AC⊥平面PBD,

因为DE平面PBD,∴AC⊥DE.

(2)连接OE,在△PBD中,EO∥PD,

所以EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,

建立如图所示的空间直角坐标系,

设PD=t,则A(1,0,0),B(0,,0),C(﹣1,0,0),

E(0,0,),P(0,﹣,t).

设平面PAB的一个法向量为(x,y,z),

,令,得

平面PBD的法向量(1,0,0),

因为二面角A﹣PB﹣D的余弦值为

所以

所以(舍),

∴EC与平面PAB所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600.

1设一次订购件,服装的实际出厂单价为元,写出函数的表达式;

2当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学组织了一次高二文科学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.

(Ⅰ)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?

(Ⅱ)在(Ⅰ)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知椭圆)的半焦距为,原点到经过两点的直线的距离为

)求椭圆的离心率;

)如图,是圆的一条直径,若椭圆经过两点,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标分别为,曲线的参数方程为为参数).

(1)求直线的直角坐标方程;

(2)若直线和曲线只有一个交点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一座圆拱桥,当水面在如图所示位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,且过点,椭圆的离心率为,点为抛物线与椭圆的一个公共点,且.

(1)求椭圆的方程;

(2)过椭圆内一点的直线的斜率为,且与椭圆交于两点,设直线为坐标原点)的斜率分别为,若对任意,存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)求直线所过定点A的坐标;

2)求直线被圆C所截得的弦长最短时直线的方程及最短弦长;

3)已知点M(-3,4),在直线MC(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数, 试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 为正三角形,平面平面 .

(Ⅰ)求证:平面平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

查看答案和解析>>

同步练习册答案