精英家教网 > 高中数学 > 题目详情
已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[
1
2
,1]
上恒成立,则实数a的取值范围是(  )
A、[-2,1]
B、[-5,0]
C、[-5,1]
D、[-2,0]
分析:在解答时,应先分析好函数的单调性,然后结合条件f(ax+1)≤f(x-2)在[
1
2
,1]上恒成立,将问题转化为有关 x的不等式在[
1
2
,1]上恒成立的问题,在进行解答即可获得问题的解答.
解答:解:由题意可得|ax+1|≤|x-2|对x∈[
1
2
,1]
恒成立,得x-2≤ax+1≤2-x
x∈[
1
2
,1]
恒成立,
从而a≥
x-3
x
a≤
1-x
x
x∈[
1
2
,1]
恒成立,
∴a≥-2且a≤0,
即a∈[-2,0],
故选D.
点评:本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答的过程当中充分体现了函数的性质、恒成立的思想以及问题转化的能力.值得同学们体会与反思,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、已知f(x)是偶函数,x∈R,若将f(x)的图象向右平移一个单位又得到一个奇函数,若f(2)=-1,则f(1)+f(2)+f(3)+…+f(2006)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是偶函数,当x≥0时,f(x)=-x2+4x,求当x<0时,f(x)=
-x2-4x
-x2-4x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•合肥二模)已知f(x)是偶函数,当.x∈[0,
π
2
]时,f(x)=xsinx,若a=f(cos1),b=f(cos2),c=f(cos3),则 a,b,c 的大小关系为(  )

查看答案和解析>>

同步练习册答案