精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知☉O1与☉O2相交于A,B两点,过点A作☉O1的切线交☉O2于点C,过点B作两圆的割线,分别交☉O1、☉O2于点D、E,DE与AC相交于点P.若AD是☉O2的切线,且PA=6,PC=2,BD=9,则AB的长为____.

【答案】6

【解析】

试题分析:由 相切 ,再由切割线定理得

,再相交弦定理知 ,又由切割线定理可得 易证 , 所以 .

试题解析:因为AC与☉O1相切,切点为A,所以∠BAC=∠ADB,

又∠BAC=∠BEC,所以∠ADB=∠BEC.所以AD∥CE,所以△CPE∽△APD,

所以,即CE=AD,因为AP为☉O1的切线,PBD为☉O1的割线,所以由切割线定理得PA2=PB·PD=PB·(PB+BD),即36=PB·(PB+9),解得,在☉O2中,由相交弦定理知PB·PE=PA·PC,即3PE=2×6,得PE=4,又因为AD为☉O2的切线,DBE为☉O2的割线,所以由切割线定理可得DA2=DB·DE,即DA2=9×(9+3+4),得DA=12,所以CE=4.

易证△BPA∽△CPE,所以,所以AB=CE=6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求证:
(2)设 =(0,1),若 + = ,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为Sn。

(1)若,且,求a

(2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;

(3)若

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图F1F2是椭圆C1+y2=1与双曲线C2的公共焦点,AB分别是C1C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足:a1= ,a1 , a2 , a3 成等差数列,公比q∈(0,1)
(1)求数列{an}的通项公式;
(2)设bn=2nan , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax﹣2alnx(a∈R),则下列说法正确的是 ①当a<0时,函数y=f(x)有零点;
②若函数y=f(x)有零点,则a<0;
③存在a>0,函数y=f(x)有唯一的零点;
④若函数y=f(x)有唯一的零点,则a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司研究开发了一种新产品,生产这种新产品的年固定成本为150万元,每生产千件,需另投入成本为 (万元), .每件产品售价为500元.该新产品在市场上供不应求可全部卖完.

(Ⅰ)写出年利润(万元)关于年产量千件)的函数解析式;

(Ⅱ)当年产量为多少千件时,该公司在这一新产品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各图中,不可能表示函数y=f(x)的图象的是(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案