精英家教网 > 高中数学 > 题目详情
18.函数y=$\frac{ln(x-1)}{\sqrt{2-x}}$的定义域为(  )
A.(-∞,2)B.(-1,2)C.(1,2)D.(2,+∞)

分析 根据对数函数的性质以及二次个数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{x-1>0}\\{2-x>0}\end{array}\right.$,解得:1<x<2,
故选:C.

点评 本题考查了求函数的定义域问题,考查对数函数的性质以及二次个数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若x∈(0,2π),则函数y=cosx+xsinx的单调递减区间是($\frac{π}{2}$,$\frac{3π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{2{e}^{x-1}(x<2)}\\{lo{g}_{2}({x}^{2}-1)(x≥2)}\end{array}\right.$,则f(3)=(  )
A.2B.3C.8D.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设锐角△ABC的内角A,B,C所对边的长分别是a,b,c,且b=4,c=1,△ABC的面积为$\sqrt{3}$,则a的值为(  )
A.$\sqrt{21}$B.$\sqrt{13}$C.$\sqrt{13}$或$\sqrt{21}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有一个数列{an}的前几项为3,8,15,24,35,请归纳出该数列的通项an=n2+2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知y=f(x)是奇函数,若g(x)=f(x)+2且g(1)=1,求g(-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)在其定义域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),当x>1时,f(x)>0;
(1)求f(8)的值;
(2)讨论函数f(x)在其定义域(0,+∞)上的单调性;
(3)解不等式f(x)+f(x-2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设i为虚数单位,则复数z=$\frac{5i}{2-i}$的共轭复数在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.计算
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-7.8)0-(3$\frac{3}{8}$)${\;}^{\frac{2}{3}}$+($\frac{2}{3}$)-2
(2)(lg2)2+lg2•lg5+$\frac{lo{g}_{3}5}{lo{g}_{3}10}$.

查看答案和解析>>

同步练习册答案