精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数,其中为常数.
(Ⅰ)当,时,求函数的单调递增区间;
(Ⅱ)若任取,,求函数上是增函数的概率.
解:(1)当时,  -------2分
,解得,-----4分
故函数的单调递增区间分别为  -------6分
(2)
若函数上是增函数,则对于任意恒成立.
所以,,即 -------8分
设“上是增函数”为事件,则事件对应的区域为

全部试验结果构成的区域,如图.  -----12分
所以,
故函数上是增函数的概率为    -------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)讨论的单调性;
(II)设,证明:当时,
(III)若函数的图像与x轴交于AB两点,线段AB中点的横坐标为x0
证明:x0)<0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式x>0,所确定的平面区域被直线分为面积相等的两部分,则k的值是(    )
A.1B. 2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)
设函数处的切线方程为
(Ⅰ)求的解析式;
(Ⅱ)证明:曲线上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)、g(x)在区间[a,b]上可导,且f′(x)>g′(x),f(a)=g(a),则在[a,b]上有                                                                                                                 (  )
A.f(x)<g(x) B.f(x)>g(x)
C.f(x)≥g(x)D.f(x)≤g(x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知,则此函数图象在点(1,)处的切线的倾斜角为
A.零角B.锐角C.直角D.钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


曲线在点处的切线斜率为    ▲  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x2-2ln x的单调减区间是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的导函数,则数列 (n∈N*)的前n项和是
A .         B.         C.        D.

查看答案和解析>>

同步练习册答案