精英家教网 > 高中数学 > 题目详情
7.如图,圆锥的顶点为P,底面圆O半径为1,圆锥侧面积为$\sqrt{2}π$,AB是圆O的直径,点C是圆O上的点,且$BC=\sqrt{2}$.
(Ⅰ)求异面直线PA与BC所成角;
(Ⅱ)点E在线段PB上,求CE+OE的最小值.

分析 (Ⅰ)延长CO交圆O于D,连AD,∠PAD是异面直线PA与BC所成角,即可求异面直线PA与BC所成角;
(Ⅱ)当E为PB中点时,CE+OE最小,即可求CE+OE的最小值.

解答 解:(Ⅰ)由${S_侧}=πrl=\sqrt{2}π,r=1$,得$l=PA=\sqrt{2},PO=1$.
延长CO交圆O于D,连AD,由△OBC≌△ODA,得∠ADO=∠BCO,得AD∥BC,所以∠PAD是异面直线PA与BC所成角.
因为$PA=AD=PD=\sqrt{2}$,所以∠PAD=60°.
(Ⅱ)当E为PB中点时,由OB=OP=1,得$OE⊥PB,OE=\frac{{\sqrt{2}}}{2}$,
由$CP=CB=\sqrt{2}$,得$CE⊥PB,CE=\frac{{\sqrt{6}}}{2}$,
所以当E为PB中点时,CE+OE最小,最小值为$\frac{{\sqrt{6}+\sqrt{2}}}{2}$.

点评 本题考查线线角,考查空间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是等差数列,且a2+a3+a10+a11=48,则a5+a8等于(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a∈R,且a≠0).
(1)若函数f(x)在区间(2016,+∞)上单调递增,求实数a的取值范围;
(2)若在区间[1,e]上至少存在一点x0.使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.△ABC中,已知角A,B,C所对的边分别为a,b,c,$\frac{cosA}{a}$+$\frac{cosC}{c}$=$\frac{1}{b}$,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面积为2$\sqrt{7}$,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是(  )
A.异面B.相交C.异面或平行D.相交或异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A,B两点,且直线l的倾斜角是渐近线OA倾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图,则该几何体的体积为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,a1=1,a3+a5=3,若a1,a7,an成等比数列,则n=19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知底面边长为$2\sqrt{3}$的正三棱锥O-ABC的体积为$\sqrt{3}$,且A,B,C在球O上,则球的体积是(  )
A.$\frac{{20\sqrt{5}π}}{3}$B.C.20πD.$4\sqrt{3}π$

查看答案和解析>>

同步练习册答案