精英家教网 > 高中数学 > 题目详情

【题目】以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是ρ=2,矩形ABCD内接于曲线C1 , A,B两点的极坐标分别为(2, )和(2, ),将曲线C1上所有点的横坐标不变,纵坐标缩短为原来的一半,得到曲线C2
(1)写出C,D的直角坐标及曲线C2的参数方程;
(2)设M为C2上任意一点,求|MA|2+|MB|2+|MC|2+|MD|2的取值范围.

【答案】
(1)解:曲线C1的极坐标方程是ρ=2,矩形ABCD内接于曲线C1,A,B两点的极坐标分别为(2, )和(2, ),利用对称性可得:C ,D ,分别化为直角坐标:C ,D

曲线C1的极坐标方程是ρ=2,化为直角坐标方程:x2+y2=4.

设曲线C2.上的任意一点坐标P(x,y),曲线C1的任意一点P′(x′,y′),则 ,可得 .代入(x′)2+(y′)2=4,得x2+4y2=4,其参数方程为:


(2)解:A ,B .设M(2cosθ,sinθ).

|MA|2+|MB|2+|MC|2+|MD|2= + +(sinθ﹣1)2+ +(sinθ+1)2+ +(sinθ+1)2

=12cos2θ+20∈[20,32]


【解析】(1)利用对称性可得:C ,D ,分别化为直角坐标.曲线C1的极坐标方程是ρ=2,利用互化公式可得直角坐标方程.设曲线C2 . 上的任意一点坐标P(x,y),曲线C1的任意一点P′(x′,y′),则 ,可得 .代入圆的方程可得x2+4y2=4,可得参数方程.(2)A ,B .设M(2cosθ,sinθ).利用两点之间的距离公式、三角函数的基本关系式及其值域即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1)求经过直线l1:x+3y-3=0,l2:x-y+1=0的交点且平行于直线2x+y-3=0的直线方程.

(2)求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过右焦点作垂直于椭圆长轴的直线交椭圆于两点,且为坐标原点.

(1)求椭圆的方程;

(2) 设直线与椭圆相交于两点,若.

①求的值;

②求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn是数列{an}的前n项和,且a1=1,an+1=﹣SnSn+1 , 则使 取得最大值时n的值为明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线2x﹣y+1=0平行,求出这条切线的方程;
(2)讨论函数f(x)的单调区间;
(3)若对于任意的x∈(1,+∞),都有f(x)<﹣2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和大于数字之积”的概率是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

时,求的值;

时,是否存在正整数nr,使得依次构成等差数列?并说明理由;

时,求的值m表示

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)当a=0时,求f(x)的单调区间;
(2)若函数f(x)在其定义域内有两个不同的极值点.
(ⅰ)求a的取值范围;
(ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

同步练习册答案