精英家教网 > 高中数学 > 题目详情
19.计算:
(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1.

分析 (Ⅰ)化带分数为假分数,化0指数幂为1,然后利用有理指数幂的运算性质得答案;
(Ⅱ)直接利用对数的运算性质化简求值.

解答 解:(Ⅰ)[(-2)2]${\;}^{\frac{1}{2}}$-(-$\frac{1}{8}$)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2+$\sqrt{(1-\sqrt{2})^{2}}$
=2-1-$\frac{4}{9}+\frac{4}{9}+\sqrt{2}-1$=$\sqrt{2}$;
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7log72+lg1
=$\frac{3}{2}+2+2+0$
=$\frac{11}{2}$.

点评 本题考查有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.等边△ABC的边长为a,直线l过A且与AB垂直,将△ABC绕直线l旋转一周所得到的几何体的表面积是3πa2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是棱PB的中点.求证:AE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1+lnx}{x}$         
(1 ) 写出f(x)的单调递增区间;
(2)若函数在区间(a,a+$\frac{1}{2}$)(其中a>0)上存在极值,求实数a的取值范围;
(3)求证:当x≥1时,不等式f(x)>$\frac{2sinx}{x+1}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在△ABC中,∠B=45°,D是BC边上一点,AC=7,AD=5,DC=3,则AB的长为(  )
A.$\frac{\sqrt{6}}{15}$B.5C.$\frac{5\sqrt{6}}{2}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若点(-1,3)在偶函数y=f(x)的图象上,则f(1)等于(  )
A.0B.-1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.高二举行了一次语文知识竞赛,其中一题为连线题,要求将4位文学家与它们的作品一对一连线,规定每连对一条得5分,连错一条得-2分,某同学随机用4条线将文学家与作品一对一连接起来.
(1)求该同学恰好连对一题的概率P1
(2)求该同学得分不低于6分的概率P2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn满足${S_n}=\frac{3n}{2}-\frac{n^2}{2},n∈{N^*}$.
(I)求{an}的通项公式;
(Ⅱ)求数列$\{\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某工厂有甲乙丙丁四类产品共3000件,且所占比例为1:2:3:4,现按照分层抽样的方式抽取200件,则甲产品抽取(  )件.
A.20B.40C.60D.80

查看答案和解析>>

同步练习册答案