精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)图象上的点(1,-$\frac{11}{3}$)处的切线斜率为-4.
(1)求a、b的值;
(2)求y=f(x)的极大值;
(3)对?x∈[-2,3],都有f(x)-k<0,求k的取值范围.

分析 (1)求出函数的导数,得到关于a,b的方程组,解出即可;
(2)求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;
(3)根据函数的单调性求出函数的最大值,从而求出k的范围即可.

解答 解:(1)∵f′(x)=x2+2ax-b,
∴由题意可知:f′(1)=-4且f(1)=-$\frac{11}{3}$.
即$\left\{\begin{array}{l}{1+2a-b=-4}\\{\frac{1}{3}+a-b=-\frac{11}{3}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$;
(2)由(1)知:f(x)=$\frac{1}{3}$x3-x2-3x,
f′(x)=x2-2x-3=(x+1)(x-3)
令f′(x)=0,得x1=-1,x2=3.
由此可知,当x变化时,f′(x),f(x)的变化情况如下表:

x(-∞,-1)-1(-1,3)3(3,+∞)
f′(x)+0-0+
f(x)极大值极小值
∴当x=-1时,f(x)取极大值$\frac{5}{3}$.
(3)由(2)知y=f(x)在(-2,-1)内是增函数,在(-1,3)内是减函数,所以函数的最大值为$\frac{5}{3}$,
∵对?x∈[-2,3],都有f(x)-k<0.
∴k>$\frac{5}{3}$,∴k的取值范围为($\frac{5}{3}$,+∞).

点评 本题考查了函数的单调性、最值、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=\left\{\begin{array}{l}{({x-1})^2}({x<2})\\ \frac{2}{x}\;\;\;\;\;\;\;\;\;({x≥2})\end{array}\right.$,则f(x)的单调增区间是[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设全集U=R,集合A={x|-2x2+3x+5>0},集合B={x|3x2+6≤19x},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算${1.1^0}+\root{3}{512}-{0.5^{-2}}+lg25+2lg2$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=2,BD=2$\sqrt{3}$,且AC,BD交于点O,E是PB上任意一点.
(1)求证:AC⊥DE
(2)已知二面角A-PB-D的余弦值为$\frac{\sqrt{15}}{5}$,若E为PB的中点,求EC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a,b,c是三条不同的直线,命题:“a∥b且a⊥c⇒b⊥c”是真命题,如果把a,b,c中的两条直线换成两个平面,在所得3个命题中,真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过点M(0,4)的直线l交抛物线x2=4y于AA,B两点,若△AOM与△BOM的面积比为2:1(O为坐标原点),则直线l的斜率为±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2x+x-4的零点个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,AD是角A的平分线.
(1)用正弦定理或余弦定理证明:$\frac{BD}{DC}=\frac{BA}{AC}$;
(2)已知AB=2.BC=4,$cosB=\frac{1}{4}$,求AD的长.

查看答案和解析>>

同步练习册答案